HDF-EOS2 v3.0 Users Guide

EED2-170-001

HDF-EOS Library User's Guide for EOSDIS Evolution and Development-2(EED-2) Contract, Volume 1: Overview and Examples

Technical Paper

July 2021

Prepared Under Contract # NNG15HZ39C

Raytheon Company Riverdale, Maryland

This page intentionally left blank.

Preface

This document is a Users Guide for HDF-EOS (Hierarchical Data Format - Earth Observing System) library tools. HDF is the scientific data format standard selected by NASA as the baseline standard for EOS. This Users Guide accompanies Version 3.0 software, which is available to the user community on the Earthdata Wiki page: https://wiki.earthdata.nasa.gov/display/DAS/Toolkit+Downloads. This library is aimed at EOS data producers and consumers, who will develop their data into increasingly higher order products. These products range from calibrated Level 1 to Level 4 model data. The primary use of the HDF-EOS library will be to create structures for associating geolocation data with their associated science data. This association is specified by producers through use of the supplied library. Most EOS data products which have been identified, fall into categories of grid, point or swath structures, which are implemented in the current version of the library. Services based on geolocation information will be built on HDF-EOS structures. Producers of products not covered by these structures, e.g. non-geolocated data, can use the standard HDF libraries.

In the ECS (EOS Core System) production system, the HDF-EOS library will be used in conjunction with SDP (Science Data Processing) Toolkit software. The primary tools used in conjunction with HDF-EOS library will be those for metadata handling, process control and status message handling. Metadata tools will be used to write ECS inventory and granule specific metadata into HDF-EOS files, while the process control tools will be used to access physical file handles used by the HDF tools. (*SDP Toolkit Users Guide for the EOSDIS Evolution and Development-2 Contract, December 2017, EED2-333-001*).

HDF-EOS is an extension of The HDF Group (THG) HDF and uses HDF library calls as an underlying basis. Version 4.2.13 or 4.2.15 of HDF can be used. The library tools are written in the C language and a FORTRAN interface is provided. The current version contains software for creating, accessing, and manipulating Grid, and Swath structures. This document includes overviews of the interfaces, and code examples. EOSView, the HDF-EOS viewing tool, uses an older version of the library.

An email address has been provided for user help:

sdps-support@earthdata.nasa.gov

Any questions should be addressed to:

Data Management Office Raytheon Company EOSDIS Evolution and Development-2 (EED-2) Contract 5700 Rivertech Court Riverdale, MD 20737

Abstract

This document will serve as the user's guide to the HDF-EOS file access library. HDF refers to the scientific data format standard selected by NASA as the baseline standard for EOS, and HDF-EOS refers to EOS conventions for using HDF. This document will provide information on the use of the three interfaces included in HDF-EOS – Point, Swath, and Grid – including overviews of the interfaces, and code examples. This document should be suitable for use by data producers and data users alike.

Keywords: HDF-EOS, Metadata, Standard Data Format, Standard Data Product, Disk Format, Point, Grid, Swath, Projection, Array, Browse

This page intentionally left blank.

Contents

Preface

Abstract

1. Introduction

	Pur
	pos
	e
	an
	d
	Ob
	jec
	tiv
	es
1.3	1-1
	Sta
	tus
	an
	d
	Sc
	he
	dule
1.4	1-2
	D
	Do
	cu
	me
	nt Or
	Or
	ga
	niz ati
	ati
	on
1 5	1.2
1.5	1-3

2. Related Documentation

	Par
	ent
	Do
	cu
	me
	nts
2.1	2-1

	Rel
	ate
	d
	Do
	cu
	me
	nts
2.2	2-1

3. Overview of HDF-EOS

	Ba ck gro und
3.1	3-1
	De sig n Phi los op hy
3.2	3-1 Pa cka ging
3.3	3-2

4. Point Data

Int			
rod			
uct			
ion			
4.14-1			

Ap pli cab ility	
4.2 4-3	
Th e Poi nt Da ta Int erf ace	
4.3 4-3	
	PT API Routines
4.3.	1 4-4 File Identifiers
4.3.	2 4-5 Point Identifiers
4.3.	34-5
Pro gra m mi ng Mo del	
4.44-6	

5. Swath Data

	-	
]	lnt	
1	rod	
l	uct	
i	on	
5.1.5	5-1	
		Data Fields
		5.1.1 5-2
		Geolocation Fields
		5.1.2 5-3
		Dimensions
		Dimensions
		5.1.35-3
		Dimension Mans
		Dimension maps
		5.1.4 5-3
		Ι
		ndex
		5.1.5 5-4
	An	
1	nli	
1	rah	
i	ility	
1	inty	
5.2 5	5-5	
ŗ	Гh	
(e	
	Sw	
6	ath	
]	Da	
t	ta	
]	Int	
(erf	
ć	ace	
	•••••	
5.3 5	5-5	

	SW API Routines
	5.3.1 5-5
	File Identifiers
	5.3.2 5-7
	Swath Identifiers
:	5.3.3 5-7
Pro	
gra	
m mi	
ng	
Mo	
del	
157	

5.45-7

6. Grid Data

Int	
rod	
uct	
ion	
6.1 6-1	
Data Fields	
6.1.1 6-2	•••
Dimensions	
6.1.2 6-2	•••
Projections	
6.1.3 6-2	••••

	Ap
	pli
	cab
	ility
6.2	6-3
	Th
	e
	Gri
	d
	Da
	ta
	Int
	erf
	ace

6.36-3

GD API Routines

••	•	•	•	•	•	•	٠	٠	•	٠	٠	٠	٠	•	•	• •	• •	••	•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	• •	• •	•	•	•	٠	٠	•	• •	•	٠	•	••	٠	•	• •	•	٠	٠	• •	• •	•	٠	٠	•	• •	••	,

6.3.1 6-3

File Identifiers

•••••	• • • • • • • • • • • • • • • • • • • •	••••••	

6.3.26-5

Grid Identifiers

	•••••	• • • • • • • •	•••••	•••••	 •••••	•••••	•••••
6.3.3	6-5						

Pro

110		
gra		
m		
mi		
ng		
Mo		
del		
•••••	 	
6.46-5		
GC		
TP		
Us		
age		
6.56-6		

GCTP Projection Codes
6.5.1 6-6
UTM Zone Codes
6.5.2 6-7
GCTP Spheroid Codes
6.5.3 6-8
Projection Parameters
6.5.4 6-9

List of Figures

4-1. A Simple Point Data Example	4-1
4-2. Recording Points Over Time	4-2
4-3. Point Data from a Moving Platform	4-3
5-1. A Typical Satellite Swath: Scanning Instrument	5-1
5-2. A Swath Derived from a Profiling Instrument	5-2
5-3. A "Normal" Dimension Map	5-4
5-4. A "Backwards" Dimension Map	5-4
6-1. A Data Field in a Mercator-Projected Grid	6-1
6-2. A Data Field in an Interrupted Goode's Homolosine-Projected Grid	6-2

List of Tables

4-1.	Summary of the Point Interface		4-5
5-1.	Summary of the Swath Interface		5-6
6-1.	Summary of the Grid Interface		6-4
6-2.	Projection Transformation Package Projection Parameters	6-9	
6-3.	Projection Transformation Package Projection Parameters Elements 6-10)	

Appendix A. Installation and Maintenance

Abbreviations and Acronyms

This page intentionally left blank.

1.1 dentification

The *HDF-EOS User's Guide* was prepared under the EOSDIS Evolution and Development-2 Contract (NNG15HZ39C).

1.2 Scope

L

This document is intended for use by anyone who wishes to write software to create or read EOS data products. Users of this document will likely include EOS instrument team science software developers and data product designers, DAAC personnel, and end users of EOS data products such as scientists and researchers.

1.3 Purpose and Objectives

This document will serve as a user's guide for the HDF-EOS file access library developed for ECS. Upon reading this document, the reader should have a thorough understanding of each data model and corresponding programming interface provided as part of HDF-EOS. Specifically, this user's guide contains an overview of each data model, a complete function-by-function reference for each software interface, and sample programs illustrating the basic features of each interface.

The reader should note that this paper will not discuss the HDF structures underlying HDF-EOS nor the specific conventions employed. For more information on HDF, its design philosophy, and its logical and physical formats, the reader is referred to The HDF Group (THG) (formerly NCSA) documentation listed in Section 2.2 Applicable Documents. For more information on the conventions employed by HDF – EOS, the reader is referred to the various design White Papers listed in Section 2.2.

Important Note:

The FORTRAN-literate reader is cautioned that dimension ordering is row-major in C (last dimension varying fastest), whereas FORTRAN uses column-major ordering (first dimension varying fastest). Therefore, FORTRAN programmers should take care to use dimensions in the reverse order to that shown in the text of this document. (FORTRAN code examples are correct as written.)

1.4 Status and Schedule

January 1996, Prototype Library Available January 1996 Version 1 API Available March 1996, Version 1 API Frozen April 1996 - Delivery of HDF-EOS Users Guide and Beta Software June 1996 - Delivery of Version 1 HDF-EOS, Release A EOSView Available, Beta 1.9 November 1996 - Delivery of Version 1.5 of the HDF-EOS Library. Release A of EOSView, Beta 2.1 Available, Delivery of SDP Toolkit Version 5.1.1

May 1997 - Delivery of Version 2.0 of the HDF-EOS Library. Release B.0 of EOSView, Beta 2.3 Available, Delivery of SDP Toolkit Version 5.2

October 1997 - Delivery of Version 2.1 of the HDF-EOS Library. Release B.0 of EOSView, Delivery of SDP Toolkit Version 5.2.1

March 1998 - Delivery of Version 2.2 of the HDF-EOS Library. Release B.0 of EOSView, Delivery of SDP Toolkit Version 5.2.2

October 1998 - Delivery of Version 2.3 of the HDF-EOS Library. Release B.0 of EOSView, Delivery of SDP Toolkit Version 5.2.3

January 1999 - Delivery of Version 2.4 of the HDF-EOS Library. Release B.0 of EOSView, Delivery of SDP Toolkit Version 5.2.4

June 1999 - Delivery of Version 2.5 of the HDF-EOS Library. Release B.0 of EOSView, Delivery of SDP Toolkit Version 5.2.5

December 1999 - Delivery of Version 2.6 of the HDF-EOS Library. Release B.0 of EOSView, Delivery of SDP Toolkit Version 5.2.6

October 2000 - Delivery of Version 2.7 of the HDF-EOS Library. Release B.0 of EOSView, Delivery of SDP Toolkit Version 5.2.7

March 2002 - Delivery of Version 2.8 of the HDF-EOS Library. Release B.0 of EOSView, Delivery of SDP Toolkit Version 5.2.8

April 2003 - Delivery of Version 2.9 of the HDF-EOS Library. Delivery of SDP Toolkit Version 5.2.9

October 2003 - Delivery of Version 2.10 of the HDF-EOS Library. Delivery of SDP Toolkit Version 5.2.10

May 2004 - Delivery of Version 2.11 of the HDF-EOS Library. Release of HDFView_EOS, Delivery of SDP Toolkit Version 5.2.11

August 2004 - Delivery of Version 2.12 of the HDF-EOS Library. Delivery of SDP Toolkit Version 5.2.12

April 2005 - Delivery of Version 2.13 of the HDF-EOS Library. Delivery of SDP Toolkit Version 5.2.13

March 2006 - Delivery of Version 2.14 of the HDF-EOS Library. Delivery of SDP Toolkit Version 5.2.14

February 2008 - Delivery of Version 2.15 of the HDF-EOS Library. Delivery of SDP Toolkit Version 5.2.15

July 2009 - Delivery of Version 2.16 of the HDF-EOS Library. Delivery of SDP Toolkit Version 5.2.16

August 2010 - Delivery of Version 2.17 of the HDF-EOS Library. Delivery of SDP Toolkit Version 5.2.17

January 2012 - Delivery of Version 2.18 of the HDF-EOS Library. Delivery of SDP Toolkit Version 5.2.18

March 2014 - Delivery of Version 2.19 of the HDF-EOS Library. Delivery of SDP Toolkit Version 5.2.19

December 2017 - Delivery of Version 2.20 of the HDF-EOS Library. Delivery of SDP Toolkit Version 5.2.20

July 2021 – Delivery of Version 3.0 of the HDF-EOS Library.

1.5 Document Organization

This document is organized as follows:

S ec ti 0 n 1 -In tr 0 d u ct io n -Pr es e nt s S c 0 p e a n d P ur р os e of th is d 0 c u m e • nt

- S ec ti 0 n 2 -R el at e d D 0 c u m e nt at
- ion

S ec ti 0 n 3 -0 v er vi e W of Η D F-E O S -В ac k gr 0 u n d a n d d es ig n fe at ur es of th e li br ar • y.

S ec ti 0 n 4 Р oi nt D at a -D es ig n fe at ur es a n d li st in g of th e Η D F-E O S P oi nt Li br ar

• y.

S ec ti 0 n 5 -S w at h D at a -D es ig n fe at ur es a n d li st in g of th e Η D F-E O S S w at h Li br

ar • y.

S ec ti 0 n 6 -G ri d D at a -D es ig n fe at ur es a n d li st in g of th e Η D F-E O S G ri d Li br ar

• y.

А		
n		
P n		
P		
n		
n di		
v		
л Л		
A		
- In		
111 at		
st		
a1 10		
1a		
1		
0 n		
ll In		
111 st		
St ru		
iu ct		
io		
ns		
115		
, Т		
- -		
t		
D		
ri		
V		
er		
S,		
Ú		
se		
r		
F		
ee		
d		
b		
• ack		

A cr

CI

- 0
- n y
- ms

The accompanying Function Reference Guide is organized as follows:

S ec ti o n 1 -In tr o d u ct io

• n

S ec ti 0 n 2 -F u n ct io n R ef er e n ce -S p ec ifi ca ti 0 n of th e H D F-E O S, S w at h a n d

G • rid		
A • PIs		
А		
cr		
0		
n		
У		
• ms		

This page intentionally left blank.
2.1 Parent Documents

The following documents are the parents from which this document's scope and content derive:

The HDF-EOS Design Document for the ECS 456-TP-013 Project Thoughts on HDF-EOS Metadata, A White Paper for the ECS 170-WP-002 Project The HDF-EOS Swath Concept, A White Paper for the ECS 170-WP-003 Project The HDF-EOS Grid Concept, A White Paper for the ECS 170-WP-011 Project

The HDF-EOS Point Concept, A White Paper for the ECS 170-WP-012 Project

2.2 Related Documents

The following documents are referenced within this technical paper, or are directly applicable, or contain policies or other directive matters that are binding upon the content of this document.

Release 9 SDP Toolkit Users Guide for the EED EED2-333-001 Contract An ECS Data Provider' s Guide to Metadata in Release A, A White Paper for the ECS 163-WP-001 Project HDF-EOS Primer for Version 1 EOSDIS, A White Paper for the ECS 175-WP-001 Project

Getting Started with HDF, Version 3.2, University of none Illinois, May 1993

NCSA HDF Reference Manual, Version 3.3, University of Illinois, February none 1994

NCSA HDF Specification and Developer's Guide, Version 3.2, University of Illinois, September none 1993 NCSA HDF User'

s Guide, Version 4.0, University of Illinois, February none 1996

NCSA HDF User' s Guide, Version 3.3, University of Illinois, March none 1994

An Album of Map Projections, USGS Professional Paper 1453, Snyder and none Voxland, 1989

Map Projections -A Working Manual, USGS Professional Paper none 1395, Snyder, 1987

The WMO Format for the Storage of Weather Product Information and the Exchange of Weather Product Messages in Gridded Binary Form, John D. Stackpole, Office Note 388, GRIB Edition 1, U.S. of Dept. Commerce, National NOAA, Weather Service National Meteorological Center, Automation Division, Section 1, pp. 9-12, July 1, none 1994. The Michigan Grid: Earth Description, Registration Method for SSM/I Data, and Derivative Map Projection, John F. Galntowicz, W. Anthony England, The University of Michigan, Radiation Laboratory, Ann Arbor, Michigan, none Feb. 1991.

Selection of a Map for Data Grid Analysis and Archival, William B. Rossow, and Garder, Leonid American Meteorological Society Notes, pp. 1253-1257, Aug. none 1984. Level-3 SeaWiFS Data Products: Spatial and Temporal Binning Algorithms, Janet W. Campbell, John M. Blaisdell, and Michael Darzi, NASA Technical Memorandum 104566, GSFC, Volume 32, Appendix A, Jan. none 13, 1995.

3.1 Background

The Hierarchical Data Format (HDF) has been selected by the EOSDIS Project as the format of choice for standard product distribution. HDF is a function library that was originally developed by The HDF Group (THG) to provide a portable storage mechanism for supercomputer simulation results. Although this user's guide does not attempt to explain the inner workings of THG HDF, a cursory knowledge of HDF may help the reader to understand the basic workings of HDF-EOS.

HDF files consist of a directory and a collection of data objects. Every data object has a directory entry, containing a pointer to the data object location, and information defining the datatype (much more information about HDF can be found in the HDF documentation referenced in Section 2.2 of this Guide). Many of the HDF defined datatypes map well to EOS datatypes. Examples include raster images, multi-dimensional arrays, and text blocks. There are other EOS datatypes, however, that do not map directly to HDF datatypes, particularly in the case of geolocated datatypes. Examples include projected grids, satellite swaths, and field campaign or point data. Therefore, some additions to traditional HDF are required to fully support these datatypes.

To bridge the gap between the needs of EOS data products and the capabilities of HDF, three new EOS specific datatypes – *point*, *swath*, and *grid* – have been defined within the HDF framework. Each of these new datatypes is constructed using conventions for combining standard HDF datatypes and is supported by a special application programming interface (API) which aids the data product user or producer in the application of the conventions. The APIs allow data products to be created and manipulated in ways appropriate to each datatype, without regard to the actual HDF objects and conventions underlying them.

The sum of these new APIs comprises the HDF-EOS library. The *Point* interface is designed to support data that has associated geolocation information but is not organized in any well defined spatial or temporal way. The *Swath* interface is tailored to support time-ordered data such as satellite swaths (which consist of a time-ordered series of scanlines), or profilers (which consist of a time-ordered series of profiles). The *Grid* interface is designed to support data that has been stored in a rectilinear array based on a well defined and explicitly supported projection.

3.2 Design Philosophy

Since the HDF-EOS library is intended to support end users of EOS data as well as EOS data producers, it is essential that HDF-EOS be available separately from other ECS software. For this reason, HDF-EOS does not rely on any other ECS software, including the SDP Toolkit. It is treated as an extension to the HDF library and, as such, it follows the general design philosophy and coding style of HDF. For more information on the design of HDF, please refer to the appropriate HDF documentation listed in Section 2.2.

3.3 Packaging

Because of the functional overlap of HDF, HDF-EOS, and the SDP Toolkit, it is important to understand what each one contains and how they are related. The HDF Group's HDF is a subroutine library freely available as source code from the HDF Group (hdfgroup.org). The basic HDF library has its own documentation and comes with a selection of simple utilities.

HDF-EOS is a higher-level library available from the ECS project as an add-on to the basic HDF library. It requires The HDF Group's HDF for successful compiling and linking and will be widely available (at no charge) to all interested parties.

The SDP Toolkit is a large, complex library of functions for use by EOS data producers. It presents a standard interface to Distributed Active Archive Center (DAAC) services for data processing, job scheduling, and error handling. While the SDP Toolkit may be available to individual researchers, it is unlikely to be of great use outside of EOS DAACs and Science Computing Facilities (SCF). The Toolkit distribution includes source code for both HDF and HDF-EOS.

EOS instrument data producers will use the SDP Toolkit in conjunction with the HDF-EOS and HDF libraries. Of primary importance will be process control and metadata handling tools. The former will be used to access physical file handles required by the HDF library. The SDP Toolkit uses logical file handles to access data, while HDF (HDF-EOS) requires physical handles. Users will be required to make one additional call, using the SDP toolkit to access the physical handles. Please refer to the SDP Toolkit Users Guide for the EED Contract, December 2017, 333-EED2-001, Revision 01, Section 6.2.1.2 for an example). Section 7 of this document gives examples of HDF-EOS usage in conjunction with the SDP Toolkit.

Metadata tools will be used to access and write inventory and granule specific metadata into their designated HDF structures. Please refer to Section 6.2.1.4 of the SDP Toolkit Users Guide.

We make an important distinction between granule metadata and the structural metadata referred to in the software description below. Structural metadata specifies the internal HDF-EOS file structure and the relationship between geolocation data and the data itself. Structural metadata is created and then accessed by calling the HDF-EOS functions. Granule metadata will be used by ECS to perform archival services on the data. A copy will be attached to HDF-EOS files by SDP toolkit calls and another copy is placed in the ECS archives. The two sets of metadata are not dynamically linked. However, the data producer should use consistent naming conventions when writing granule metadata when calling the HDF-EOS API. Please refer to the examples in Section 7, below.

THG HDF libraries, on which HDF-EOS is based, is installed automatically with the SDP Toolkit installation script. Please refer to The SDP Toolkit Users Guide for the EED Contract, Section 5 for information pertaining installation and maintenance of the SDP Toolkit.

Note that a subsetted version of the SDP Toolkit is also available. This is the MTD Toolkit, which contains time and date conversion and metadata tool only. The MTD Toolkit is intended to be used by data producers who will produce products outside ECS but will archive the data within ECS.

This page intentionally left blank.

I 4.1 ntroduction

This section will describe the routines available for storing and retrieving HDF-EOS *Point Data*. A Point Data set is made up of a series of data records taken at [possibly] irregular time intervals and at scattered geographic locations. Point Data is the most loosely organized form of geolocated data supported by HDF-EOS. Simply put, each data record consists of a set of one or more data values representing, in some sense, the state of a point in time and/or space.

Figure 4-1 shows an example of a simple point data set. In this example, each star on the map represents a reporting station. Each record in the data table contains the location of the point on the Earth and the measurements of the temperature and dew point at that location. This sort of point data set might represent a snapshot in time of a network of stationary weather reporting facilities.

Figure 4-1. A Simple Point Data Example

A more realistic example might record the changes in the parameters over time by including multiple values of the parameters for each location. In this case, the identity and location of the reporting stations would remain constant, while the values of the measured parameters would vary. This sort of setup naturally leads to a hierarchical table arrangement where a second table is used to record the static information about each reporting station, thereby removing the redundant information that would be required by a single "flat" table and acting as an index for quick access to the main data table. Such an arrangement is depicted in Figure 4-2.

Figure 4-2. Recording Points Over Time

An even more complex point data set may represent data taken at various times aboard a moving ship. Here, the only thing that remains constant is the identity of the reporting ship. Its location varies with each data reading and is therefore treated similarly to the data. Although this example seems more complicated than the static example cited above, its implementation is nearly identical. Figure 4-3 shows the tables resulting from this example. Note that the station location information has been moved from the static table to the data table.

Figure 4-3. Point Data from a Moving Platform

In fact, the hierarchical arrangement of the tables in the last two examples can be expanded upon to include up to seven indexing levels (a total of eight levels, including the bottom level data table). A normal data access on a multi-level hierarchical point data set would involve starting at the top (first) level and following successive pointers down the structure until the desired information is found. As each level is traversed, more and more specific information is gained about the data.

In rare cases, it may be advantageous to access a point data set from the bottom up. The point data model implemented in HDF-EOS provides for backward (or upward) pointers which facilitate bottom-up access.

4.2 Applicability

The Point data model is very flexible and can be used for data at almost any level of processing. It is expected that point structure will be used for data for which there is no spatial or temporal organization, although lack of those characteristics do not preclude the use of a point structure. For example, profile data, which is accumulated in sparsely located spatial averages, may be most useful in a point structure.

4.3 The Point Data Interface

The PT interface consists of routines for storing, retrieving, and manipulating data in point data sets.

4.3.1 PT API Routines

All C routine names in the point data interface have the prefix "PT" and the equivalent FORTRAN routine names are prefixed by "pt." The PT routines are classified into the following categories:

A cces S ro ut in es in iti al iz e an d te r m in at e ac ce SS to th e P Т in te rf ac e an d p oi nt da ta se ts (i nc lu di n g o pe ni n g an d cl os in g fil es

•).

D
ef
in
iti
on
ro
ut
in
es
al
lo
W
th
e
us
er
to
se
t
k
e
У
fe
at
ur
es
of
a
р
oi
nt
d
at
a
se

• t.

В		
as		
ic		
Ι		
/0		
ro		
ut		
in		
es		
re		
a		
d		
a		
n		
d		
W		
rit		
e		
d		
at		
a		
a		
n		
d		
m		
et		
a d		
u at		
aı		
a to		
a		
n D		
P Oİ		
nt		
d		
at		
a		
se		
• t.		

In			
d			
ex			
Ι			
/0			
ro			
ut			
in			
es			
re			
а			
d			
а			
n			
d			
W			
rit			
e			
1n 6			
10			
r			
m			
at			
10 n			
11			
w hi			
nn C			
b h			
li			
n			
ks			
t			
W			
0			
ta			
bl			
es			
in			
а			
р			
oi			
nt			
d			
at			

a se • t.

In	
q	
ui	
ry	
ro	
ut	
in	
es	
re	
tu	
rn	
in	
fo	
r	
m	
at	
10	
n	
a h	
0	
ut	
d	
at	
a	
с	
0	
nt	
ai	
n	
e	
d	
in	
a	
р _.	
01	
nt	
a	
at	
a	
• +	
-ι.	

S и bs etro ut in es al lo W re a di n g of d at а fr 0 m a sp ec ifi e d g e 0 gr a р hi с re gi 0 • n.

The PT function calls are listed in Table 4-1 and are described in detail in the Software Reference Guide that accompanies this document. The page number column in the following table refers to the Software Reference Guide.

	Routine	Name		Page
Category	С	FORTRAN	Description	Nos.
	PTopen	ptopen	creates a new file or opens an existing one	2-28
	PTcreate	ptcreate	creates a new point data set and returns a handle	2-6
Access	PTattach	ptattach	attaches to an existing point data set	2-2
100000	PTdetach	ptdetach	releases a point data set and frees memory	2-14
	PTclose	ptclose	closes the HDF-EOS file and deactivates the point	2-5
			interface	
	PTdeflevel	ptdeflev	defines a level within the point data set	2-8
Definition PTdeflinkage ptdeflink defines link field to use between two levels		2-10		
	PTdefvrtregion	ptdefvrtreg	defines a vertical subset region	2-12
	PTwritelevel	ptwrlev	writes (appends) full records to a level	2-40
	PTreadlevel	ptrdlev	reads data from the specified fields and records of a level	2-32
	PTupdatelevel	ptuplev	updates the specified fields and records of a level	2-37
	PTwriteattr	ptwrattr	creates or updates an attribute of the point data set	2-39
Basic I/O	PTreadattr	ptrdattr	reads existing attribute of point data set	2-31
	PTnlevels	ptnlevs	returns the number of levels in a point data set	2-26
	PTnrecs	ptnrecs	returns the number of records in a level	2-27
	PTnfields	ptnflds	returns number of fields defined in a level	2-25
	PTlevelinfo	ptnlevinfo	returns information about a given level	2-24
	PTlevelindx	ptlevidx	returns index number for a named level	2-23
	PTbcklinkinfo	ptblinkinfo	returns link field to previous level	2-4
	PTfwdlinkinfo	ptflinkinfo	returns link field to following level	2-17
Inquiry	PTgetlevelname	ptgetlevname	returns level name given level number	2-18
	PTsizeof	ptsizeof	returns size in bytes for specified fields in a point	2-36
	PTattrinfo	ptattrinfo	returns information about point attributes	2-3
	PTinqattrs	ptinqattrs	retrieves number and names of attributes defined	2-21
	PTinqpoint	ptinqpoint	retrieves number and names of points in file	2-22
Utility	PTgetrecnums	ptgetrecnums	returns corresponding record numbers in a related level	2-19
	PTdefboxregion	ptdefboxreg	define region of interest by latitude/longitude	2-7
	PTregioninfo	ptreginfo	returns information about defined region	2-34
	PTregionrecs	ptregrecs	returns # of records and record #s within region	2-35
Subset	PTextractregion	ptextreg	read a region of interest from a set of fields in a single level	2-16
	PTdeftimeperiod	ptdeftmeper	define time period of interest	2-11
	PTperiodinfo	ptperinfo	returns information about defined time period	
	PTperiodrecs	ptperrecs	returns # of records and record #s within time period	
	PTextractperiod	ptextper	read a time period from a set of fields in a single level	2-15

Table 4-1. Summary of the Point Interface

4.3.2 File Identifiers

As with all HDF-EOS interfaces, file identifiers in the PT interface are 32-bit values, each uniquely identifying one open data file. They are not interchangeable with other file identifiers created with other interfaces.

4.3.3 Point Identifiers

Before a point data set is accessed, it is identified by a name, which is assigned to it upon its creation. The name is used to obtain a *point identifier*. After a point data set has been opened for access, it is uniquely identified by its point identifier.

4.4 Programming Model

The programming model for accessing a point data set through the PT interface is as follows:

- 1. Open the file and initialize the PT interface by obtaining a file id from a file name.
- 2. Open OR create a point data set by obtaining a point id from a point name.
- 3. Perform desired operations on the data set.
- 4. Close the point data set by disposing of the point id.
- 5. Terminate point access to the file by disposing of the file id.

To access a single point data set that already exists in an HDF-EOS file, the calling program must contain the following sequence of C calls:

```
file_id = PTopen(filename, access_mode);
pt_id = PTattach(file_id, point_name);
<Optional operations>
status = PTdetach(pt_id);
status = PTclose(file_id);
```

To access several files at the same time, a calling program must obtain a separate id for each file to be opened. Similarly, to access more than one point data set, a calling program must obtain a separate point id for each data set. For example, to open two data sets stored in two files, a program would execute the following series of C function calls:

```
file_id_1 = PTopen(filename_1, access_mode);
pt_id_1 = PTattach(file_id_1, point_name_1);
file_id_2 = PTopen(filename_2, access_mode);
pt_id_2 = PTattach(file_id_2, point_name_2);
<Optional operations>
status = PTdetach(pt_id_1);
status = PTclose(file_id_1);
status = PTdetach(pt_id_2);
status = PTclose(file_id_2);
```

Because each file and point data set is assigned its own identifier, the order in which files and data sets are accessed is very flexible. However, it is very important that the calling program individually discard each identifier before terminating. Failure to do so can result in empty or, even worse, invalid files being produced.

I 5.1 ntroduction

The Swath concept for HDF-EOS is based on a typical satellite swath, where an instrument takes a series of scans perpendicular to the ground track of the satellite as it moves along that ground track. Figure 5-1 below shows this traditional view of a swath.

Figure 5-1. A Typical Satellite Swath: Scanning Instrument

Another type of data that the Swath is equally well suited to arise from a sensor that measures a vertical profile, instead of scanning across the ground track. The resulting data resembles a standard Swath tipped up on its edge. Figure 5-2 shows how such a Swath might look.

In fact, the two approaches shown in Figures 5-1 and 5-2 can be combined to manage a profiling instrument that scans across the ground track. The result would be a three dimensional array of measurements where two of the dimensions correspond to the standard scanning dimensions (along the ground track and across the ground track), and the third dimension represents a height above the Earth or a range from the sensor. The "horizontal" dimensions can be handled as normal geographic dimensions, while the third dimension can be handled as a special "vertical" dimension.

Figure 5-2. A Swath Derived from a Profiling Instrument

A standard Swath is made up of four primary parts: data fields, geolocation fields, dimensions, and dimension maps. An optional fifth part called an index can be added to support certain kinds of access to Swath data. Each of the parts of a Swath is described in detail in the following subsections.

5.1.1 Data Fields

Data fields are the main part of a Swath from a science perspective. Data fields usually contain the raw data (often as *counts*) taken by the sensor or parameters derived from that data on a value-for-value basis. All the other parts of the Swath exist to provide information about the data fields or to support particular types of access to them. Data fields typically are two-dimensional arrays, but can have as few as one dimension or as many as eight, in the current library implementation. They can have any valid C data type.

5.1.2 Geolocation Fields

Geolocation fields allow the Swath to be accurately tied to particular points on the Earth's surface. To do this, the Swath interface requires the presence of at least a time field ("Time") or a latitude/longitude field pair ("Latitude" ^[1] and "Longitude"). Geolocation fields must be either one- or two-dimensional and can have any data type.

In addition to the Geolocation fields "Latitude", "Longitude", and "Time", one can define other geolocation fields related to the third or higher dims in the datafields. For example, if the third dim in a datafield is altitude, then on can define a geofield called "Altitude" and map the third dimension in the data field to the dimension of this field like the first 2 dimensions in the swath.

5.1.3 Dimensions

Dimensions define the axes of the data and geolocation fields by giving them names and sizes. In using the library, dimensions must be defined before they can be used to describe data or geolocation fields.

Every axis of every data or geolocation field, then, must have a dimension associated with it. However, there is no requirement that they all be unique. In other words, different data and geolocation fields may share the same named dimension. In fact, sharing dimension names allows the Swath interface to make some assumptions about the data and geolocation fields involved which can reduce the complexity of the file and simplify the program creating or reading the file.

5.1.4 Dimension Maps

Dimension maps are the glue that holds the Swath together. They define the relationship between data fields and geolocation fields by defining, one-by-one, the relationship of each dimension of each geolocation field with the corresponding dimension in each data field. In cases where a data field and a geolocation field share a named dimension, no explicit dimension map is needed. In cases where a data field has more dimensions than the geolocation fields, the "extra" dimensions are left unmapped.

In many cases, the size of a geolocation dimension will be different from the size of the corresponding data dimension. To take care of such occurrences, there are two pieces of information that must be supplied when defining a dimension map: the *offset* and the *increment*. The offset tells how far along a data dimension you must travel to find the first point to have a corresponding entry along the geolocation dimension. The increment tells how many points to travel along the data dimension before the next point is found for which there is a corresponding entry along the geolocation dimension. Figure 5-3 depicts a dimension map.

Figure 5-3. A "Normal" Dimension Map

The "data skipping" method described above works quite well if there are fewer regularly spaced geolocation points than data points along a particular pair of mapped dimensions of a Swath. It is conceivable, however, that the reverse is true – that there are more regularly spaced geolocation points than data points. In that event, both the offset and increment should be expressed as negative values to indicate the reversed relationship. The result is shown in Figure 5-4. Note that in the reversed relationship, the offset and increment are applied to the geolocation dimension rather than the data dimension.

Figure 5-4. A "Backwards" Dimension Map

5.1.5 Index

The index was designed specifically for Landsat 7 data products. These products require geolocation information that does not repeat at regular intervals throughout the Swath. The index allows the Swath to be broken into unequal length *scenes* which can be individually geolocated.

For this version of the HDF-EOS library, there is no particular content required for the index. It is quite likely that a later version of the library will impose content requirements on the index in an effort to standardize its use.

5.2 Applicability

The Swath data model is most useful for satellite [or similar] data at a low level of processing. The Swath model is best suited to data at EOS processing levels 1A, 1B, and 2. Swath structures are for data storage by MODIS, MISR, MOPITT instrument teams on EOS-Terra and AIRS in EOS-AQUA.

5.3 The Swath Data Interface

The SW interface consists of routines for storing, retrieving, and manipulating data in swath data sets.

5.3.1 SW API Routines

All C routine names in the swath data interface have the prefix "SW" and the equivalent FORTRAN routine names are prefixed by "sw." The SW routines are classified into the following categories:

Α сс es S ro ut in es in iti al iz e a n d te r m in at e ac ce SS to th e S

• W interface and swath data sets (including opening and closing files).

D	
ef	
ej in	
iti	
on	
ro	
nt	
in	
es	
al	
lo	
W	
th	
e	
us	
er	
to	
se	
t	
k	
e	
V	
fe	
at	
ur	
es	
of	
a	
S	
W	
at	
h	
d	
at	
a	
se	
• t.	

В			
as	5		
ic			
Ι			
/0)		
ro)		
ut	t		
in	l i i i i i i i i i i i i i i i i i i i		
es	3		
re			
а			
d			
a			
n			
d			
W			
rit	t		
e			
d			
at			
a			
а			
n			
a			
m			
et			
a d			
u of			
ai a			
to			
a			
s			
W			
at			
h			
d			
at	-		
a			
se			
• t.			

In	
q	
ui	
ry	
ro	
ut	
in	
es	
re	
tu	
rn	
in	
fo	
r	
m	
at	
io	
n	
a	
b	
0	
ut	
d	
at	
a	
c	
0 nt	
ni	
n	
n e	
d	
in	
a	
s	
W	
at	
h	
d	
at	
а	
se	
• t.	

S и bs etro ut in es al lo W re a di n g of d at а fr 0 m a sp ec ifi e d g e 0 gr a р hi с re gi 0 • n.

The SW function calls are listed in Table 5-1 and are described in detail in the Software Reference Guide that accompanies this document. The page number column in the following table refers to the Software Reference Guide.

	Routin	e Name		
Category	С	FORTRAN	Description	Nos.
	SWopen	swopen	opens or creates HDF file in order to create, read, or write a swath	2-87
Access	SWcreate	swcreate	creates a swath within the file	2-45
ALLESS	SWattach	swattach	attaches to an existing swath within the file	2-41
	SWdetach	swdetach	detaches from swath interface	2-63
	SWclose	swclose	closes file	2-43
	SWdefdim	swdefdim	defines a new dimension within the swath	2-52
	SWdefdimmap	swdefmap	defines the mapping between the geolocation and data dimensions	2-53
Definition	SWdefidxmap	swdefimap	defines a non-regular mapping between the geolocation and data dimension	2-57
Definition	SWdefgeofield	swdefgfld	defines a new geolocation field within the swath	2-55
	SWdefdatafield	swdefdfld	defines a new data field within the swath	2-50
	SWdefcomp	swdefcomp	defines a field compression scheme	2-48
	SWwritegeometa	swwrgmeta	writes field metadata for an existing swath geolocation field	2-108
	SWwritedatameta	swwrdmeta	writes field metadata for an existing swath data field	2-105
	SWwritefield	swwrfld	writes data to a swath field	2-106
	SWreadfield	swrdfld	reads data from a swath field.	
Basic I/O	SWwriteattr	swwrattr	writes/updates attribute in a swath	2-104
	SWreadattr	swrdattr	reads attribute from a swath	2-90
	SWsetfillvalue	swsetfill	sets fill value for the specified field	2-101
	SWgetfillvalue	swgetfill	retrieves fill value for the specified field	2-75
	SWinqdims	swinqdims	retrieves information about dimensions defined in swath	2-80
	SWinqmaps	swinqmaps	retrieves information about the geolocation relations defined	2-83
	SWinqidxmaps	swinqimaps	retrieves information about the indexed geolocation/data mappings defined	2-82
	SWinggeofields	swinqgflds	retrieves information about the geolocation fields defined	2-81
	SWinqdatafields	swinqdflds	retrieves information about the data fields defined	2-79
	SWinqattrs	swinqattrs	retrieves number and names of attributes defined	2-78
	SWnentries	swnentries	returns number of entries and descriptive string buffer size for a specified entity	2-86
Inquiry	SWdiminfo	swdiminfo	retrieve size of specified dimension	2-64
inquiry	SWmapinfo	swmapinfo	retrieve offset and increment of specified geolocation mapping	2-85
	SWidxmapinfo	swimapinfo	retrieve offset and increment of specified geolocation mapping	2-76
	SWindexinfo	swidxinfo	Retrieve the indices information about a subsetted region	2-77
	SWattrinfo	swattrinfo	returns information about swath attributes	
	SWfieldinfo	swfldinfo	retrieve information about a specific geolocation or data field	2-68
	SWcompinfo	swcompinfo	retrieve compression information about a field	2-44
	SWinqswath	swingswath	retrieves number and names of swaths in file	2-84
	SWregionindex	swreaidx	returns information about the swath region ID	2-93

Table 5-1. Summary of the Swath Interface (1 of 2)

Table 5-1. Summary of the Swath Interface (2 of 2)

	Routine Name			Page
Category	С	FORTRAN	Description	Nos.
	SWupdateidxmap	swupimap	update map index for a specified region	2-102
	SWgeomapinfo	swgmapinfo	retrieves type of dimension mapping when first dimension is geodim	2-70
	SWdefboxregion	swdefboxreg	define region of interest by latitude/longitude	2-46
Outrast	SWregioninfo	swreginfo	returns information about defined region	2-95
Subset	SWextractregion	swextreg	read a region of interest from a field	2-67

	SWdeftimeperiod	swdeftmeper	define a time period of interest	2-58
	SWperiodinfo	swperinfo	returns information about a defined time period	2-88
	SWextractperiod	swextper	extract a defined time period	2-66
	SWdefvrtregion	swdefvrtreg	define a region of interest by vertical field	2-60
	SWdupregion	swdupreg	duplicate a region or time period	2-65
Dimension	SWsetdimscale	swsetdimscale	sets dimension scale for a given dimension	2-97
	SWdefdimscale	swdefdimscale	sets dimension scale for a given dimension that is used in all fields defined in the swath	2-97
Scale	SWgetdimscale	swgetdimscale	gets dimension scale for a given dimension	2-71
	SWsetdimstrs	swsetdimstrs	sets the label, unit, and format strings for a given dimension	2-99
	SWdefdimstrs	swdefdimstrs	sets the label, unit, and format strings for a given	2-99
			dimension that is used in all fields defined in the swath	
	SWgetdimstrs	swgetdimstrs	gets the label, unit, and format strings for a given dimension	2-73

5.3.2 File Identifiers

As with all HDF-EOS interfaces, file identifiers in the SW interface are 32-bit values, each uniquely identifying one open data file. They are not interchangeable with other file identifiers created with other interfaces.

5.3.3 Swath Identifiers

Before a swath data set is accessed, it is identified by a name which is assigned to it upon its creation. The name is used to obtain a *swath identifier*. After a swath data set has been opened for access, it is uniquely identified by its swath identifier.

5.4 Programming Model

The programming model for accessing a swath data set through the SW interface is as follows:

- 1. Open the file and initialize the SW interface by obtaining a file id from a file name.
- 2. Open OR create a swath data set by obtaining a swath id from a swath name.
- 3. Perform desired operations on the data set.
- 4. Close the swath data set by disposing of the swath id.
- 5. Terminate swath access to the file by disposing of the file id.

To access a single swath data set that already exists in an HDF-EOS file, the calling program must contain the following sequence of C calls:

```
file_id = SWopen(filename, access_mode);
sw_id = SWattach(file_id, swath_name);
<Optional operations>
status = SWdetach(sw_id);
status = SWclose(file_id);
```

To access several files at the same time, a calling program must obtain a separate id for each file to be opened. Similarly, to access more than one swath data set, a calling program must obtain a separate swath id for each data set. For example, to open two data sets stored in two files, a program would execute the following series of C function calls:

```
file_id_1 = SWopen(filename_1, access_mode);
sw_id_1 = SWattach(file_id_1, swath_name_1);
file_id_2 = SWopen(filename_2, access_mode);
```

```
sw_id_2 = SWattach(file_id_2, swath_name_2);
<Optional operations>
status = SWdetach(sw_id_1);
status = SWclose(file_id_1);
status = SWdetach(sw_id_2);
status = SWclose(file_id_2);
```

Because each file and swath data set is assigned its own identifier, the order in which files and data sets are accessed is very flexible. However, it is very important that the calling program individually discard each identifier before terminating. Failure to do so can result in empty or, even worse, invalid files being produced.

I 6.1 ntroduction

This section will describe the routines available for storing and retrieving HDF-EOS *Grid Data*. A Grid data set is similar to a swath in that it contains a series of data fields of two or more dimensions. The main difference between a Grid and a Swath is in the character of their geolocation information.

As described in Section 4, swaths carry geolocation information as a series of individually located points (tie points or ground control points). Grids, though, carry their geolocation in a much more compact form. A grid merely contains a set of projection equations (or references to them) along with their relevant parameters. Together, these relatively few pieces of information define the location of all points in the grid. The equations and parameters can then be used to compute the latitude and longitude for any point in the grid.

Figure 6-1. A Data Field in a Mercator-Projected Grid

In loose terms, each data field constitutes a map in a given standard projection. Although there may be many independent Grids in a single HDF-EOS file, within each Grid only one projection may be chosen for application to all data fields. Figures 6-1 and 6-2 show how a single data field may look in a Grid using two common projections.

There are three important features of a Grid data set: the data fields, the dimensions, and the projection. Each of these is discussed in detail in the following subsections.

Figure 6-2. A Data Field in an Interrupted Goode's Homolosine-Projected Grid

6.1.1 Data Fields

The data fields are, of course, the most important part of the Grid. Data fields in a Grid data set are rectilinear arrays of two or more dimensions. Most commonly, they are simply two-dimensional rectangular arrays. Generally, each field contains data of similar scientific nature which must share the same data type. The data fields are related to each other by common geolocation. That is, a single set of geolocation information is used for all data fields within one Grid data set.

6.1.2 Dimensions

Dimensions are used to relate data fields to each other and to the geolocation information. To be interpreted properly, each data field must make use of the two predefined dimensions: "XDim" and "YDim". These two dimensions are defined when the grid is created and are used to refer to the X and Y dimensions of the chosen projection (see 5.1.3 below). Although there is a limit of eight dimensions a data field in a Grid data set my have, it is not likely that many fields will need more than three: the predefined dimensions "XDim" and a third dimension for depth or height.

6.1.3 Projections

The projection is really the heart of the Grid. Without the use of a projection, the Grid would not be substantially different from a Swath. The projection provides a convenient way to encode geolocation information as a set of mathematical equations which are capable of transforming Earth coordinates (latitude and longitude) to X-Y coordinates on a sheet of paper.

The choice of a projection to be used for a Grid is a critical decision for a data product designer. There are a large number of projections that have been used throughout history. In fact, some projections date back to ancient Greece. For the purposes of this release of HDF-EOS, however, only 14 families of projections are supported: Geographic, Universal Transverse Mercator, Albers Conical Equal Area, Lambert Conformal, Mercator, Polar Stereographic, Polyconic, Transverse Mercator, Lambert Azimuthal Equal Area, Hotin Obligue Metcator, Space Oblique, Interrupted Goode's Homolosine, Integerized Sinusoidal, and Cylindrical Equal area. These projections coincide with those supported by the SDP Toolkit for ECS Release B.

The producer's choice of a projection should be governed by knowledge of the specific properties of each projection and a thorough understanding of the requirements of the data set's users. Two excellent resources for information on projections and their properties are the USGS Professional Papers cited in Section 2.2 "Related Documents."

This release of HDF-EOS assumes that the data producer will use to create the data the General Coordinate Transformation Package (GCTP), a library of projection software available from the U.S. Geological Survey. This manual will not attempt to explain the use of GCTP. Little documentation accompanies the GCTP source code. For the purposes of this Grid interface, the data are assumed to have already been projected. The Grid interface allows the data producer to specify the exact GCTP parameters used to perform the projection and will provide for basic subsetting of the data fields by latitude/longitude bounding box.

See section below for further details on the usage of the GCTP package.

6.2 Applicability

The Grid data model is intended for data processed at a high level. It is most applicable to data at EOS processing levels 3 and 4.

As an example, the ASTER & MODIS teams on EOS-Terra uses grid structures to store data.

6.3 The Grid Data Interface

The GD interface consists of routines for storing, retrieving, and manipulating data in grid data sets.

6.3.1 GD API Routines

All C routine names in the grid data interface have the prefix "GD" and the equivalent FORTRAN routine names are prefixed by "gd." The GD routines are classified into the following categories:

A cces S ro ut in es in iti al iz e a n d te r m in at e ac ce SS to th e G D in te rf ac e a n d gr id d at a se ts

(i n cl u di n g o p e ni n g a n d cl os in g fil

es

•).

מ	
D	
ej in	
ın iti	
111 012	
ro	
10	
in	
al	
10	
w	
th	
e	
us	
er	
to	
se	
t	
k	
e	
v	
fe	
at	
ur	
es	
of	
а	
gr	
id	
d	
at	
a	
se	
• t.	

	В			
	as			
	ic			
	Ι			
	/0			
	ro			
	ut			
	in			
	es			
	re			
	a			
	d			
	a			
	n			
	d			
	W			
	rit			
	e			
	d			
	at			
	a			
	a			
	n			
	d			
	m			
	et			
	a			
	d			
	at			
	a			
	to			
	a			
	gr			
	id			
	d			
	at			
	a			
	se			
•	t.			

In	n		
q			
ui	i		
ry	у		
ro	0		
ut	t		
in	n		
es	S		
re	e		
tu	l		
rn	n		
in	n		
fo	0		
r			
m	1		
at	t		
10	0		
n			
a L			
b			
0	4		
ui d	l		
u ot	f		
ai a	t		
a			
0			
nt	t		
ai	i		
n	-		
e			
d			
in	n		
a			
gr	r		
id	đ		
d			
at	t		
a			
se	e		
• t.			

S и bs etro ut in es al lo W re а di n g of d at a fr 0 m a sp ec ifi e d g e 0 gr a р hi с re gi 0 • n.

The GD function calls are listed in Table 6-1 and are described in detail in the Software Reference Guide that accompanies this document. The page number column in the following table refers t o the Software Reference Guide.

Category	Routine	e Name		Page		
	С	FORTRAN	Description	Nos.		
Access	GDopen	gdopen	creates a new file or opens an existing one	2-157		
	GDcreate	gdcreate	creates a new grid in the file	2-115		
	GDattach	gdattach	attaches to a grid	2-109		
	GDdetach	gddetach	detaches from grid interface	2-134		
	GDclose	gdclose	closes file	2-113		
Definition	GDdeforigin	gddeforigin	defines origin of grid pixels	2-124		
	GDdefdim	gddefdim	defines dimensions for a grid	2-121		
	GDdefproj	gddefproj	defines projection of grid	2-126		
	GDdefpixreg	gddefpixreg	defines pixel registration within grid cell	2-125		
	GDdeffield	gddeffld	defines data fields to be stored in a grid	2-122		
	GDdefcomp	gddefcomp	defines a field compression scheme	2-119		
	GDblkSOMoffset	none	This is a special function for SOM MISR data. Write block SOM offset values.	2-111		
	GDsettilecomp	none	This routine was added as a fix to a bug in HDF-EOS. The current method of implementation didn't allow the user to have a field with fill values and use tiling and compression. This function allows the user to access all of these features.			
	GDwritefieldmeta	gdwrmeta	writes metadata for field already existing in file	2-178		
	GDwritefield gdwriteta writes metadata to nield aready existing in me GDwritefield gdwrfld writes data to a grid field GDreadfield gdrdfld reads data from a grid field		writes data to a grid field	2-176		
Basic I/O	GDreadfield	gdrdfld	reads data from a grid field	2-162		
Basic I/O	GDwriteattr	gdwrattr	writes/updates attribute in a grid			
	GDreadattr	gdrdattr	reads attribute from a grid	2-161		
	GDsetfillvalue	gdsetfill	sets fill value for the specified field	2-171		
	GDgetfillvalue	gdgetfill	retrieves fill value for the specified field	2-144		
	GDinqdims	gdinqdims	retrieves information about dimensions defined in grid	2-151		
	GDinqfields	gdinqdflds	retrieves information about the data fields defined in grid	2-152		
	GDinqattrs	gdinqattrs	retrieves number and names of attributes defined	2-150		
	GDnentries	gdnentries	returns number of entries and descriptive string buffer size for a specified entity	2-156		
	GDgridinfo	gdgridinfo	returns dimensions of grid and X-Y coordinates of corners	2-149		
	GDprojinfo	adprojinfo	returns all GCTP projection information	2-160		
	GDdiminfo	gddiminfo	retrieves size of specified dimension	2-135		
Inquiry	GDcompinfo	gdcompinfo	retrieve compression information about a field	2-114		
	GDfieldinfo	gdfldinfo	retrieves information about a specific geolocation or data field in the grid	2-138		
	GDinggrid	gdinggrid	retrieves number and names of grids in file	2-153		
	GDattrinfo	gdattrinfo	returns information about grid attributes	2-110		
	GDorigininfo	gdorginfo	return information about origin of grid pixels	2-158		
	GDpixreginfo	gdpreginfo	return pixel registration information for given grid	2-159		
	GDdefboxregion	gddefboxreg	define region of interest by latitude/longitude	2-118		
Subset	GDregioninfo	gdreginfo	returns information about a defined region	2-165		
	GDextractregion	gdextrreg	read a region of interest from a field	2-137		
	GDdeftimeperiod	gddeftmeper	define a time period of interest	2-130		

Table 6-1. Summary of the Grid Interface (1 of 2)

Table 6-1. Summary of the Grid Interface (2 of 2)

	Routin	e Name		Page
Category	С	FORTRAN	Description	Nos.
	GDdefvrtregion	gddefvrtreg	define a region of interest by vertical field	2-132
	GDgetpixels	gdgetpix	get row/columns for lon/lat pairs	2-145
Subset	GDgetpixvalues	gdgetpixval	get field values for specified pixels	2-147
	GDinterpolate	gdinterpolate	perform bilinear interpolation on a grid field	2-154

	GDdupregion	gddupreg	duplicate a region or time period	2-136	
	GDdeftile	gddeftle	define a tiling scheme	2-128	
	GDtileinfo	gdtleinfo	returns information about tiling for a field	2-174	
Tiling	GDsettilecache	gdsettleche	set tiling cache parameters	2-172	
, inig	GDreadtile	gdrdtle	read data from a single tile	2-164	
	GDwritetile	gdwrtile	write data to a single tile	2-179	
	GDij2ll	Gdij2ll	convert (i,j) coordinates to (lon,lat) for a grid	2-184	
Utilit∨	GDII2ij	Gdll2ij	convert (lon,lat) coordinates to (i,j) for a grid		
	GDrs2ll	gdrs2ll	convert (r,s) coordinates to (lon,lat) for EASE grid		
	GDsetdimscale	gdsetdimscale	sets dimension scale for a given dimension	2-167	
	GDdefdimscale	gddefdimscale	sets dimension scale for a given dimension used in all fields		
Dimension			defined in the grid		
Scale	GDgetdimscale	gdgetdimscale	gets dimension scale for a given dimension	2-140	
	GDsetdimstrs	gdsetdimstrs	sets the label, unit, and format strings for a given dimension	2-169	
	GDdefdimstrs	gddefdimstrs	sets the label, unit, and format strings for a given dimension	2-169	
			used in all fields defined in the grid		
	GDgetdimstrs	gdgetdimstrs	gets the label, unit, and format strings for a given dimension	2-142	

6.3.2 File Identifiers

As with all HDF-EOS interfaces, file identifiers in the GD interface are 32-bit values, each uniquely identifying one open data file. They are not interchangeable with other file identifiers created with other interfaces.

6.3.3 Grid Identifiers

Before a grid data set is accessed, it is identified by a name which is assigned to it upon its creation. The name is used to obtain a *grid identifier*. After a grid data set has been opened for access, it is uniquely identified by its grid identifier.

6.4 Programming Model

The programming model for accessing a grid data set through the GD interface is as follows:

- 1. Open the file and initialize the GD interface by obtaining a file id from a file name.
- 2. Open OR create a grid data set by obtaining a grid id from a grid name.
- 3. Perform desired operations on the data set.
- 4. Close the grid data set by disposing of the grid id.
- 5. Terminate grid access to the file by disposing of the file id.

To access a single grid data set that already exists in an HDF-EOS file, the calling program must contain the following sequence of C calls:

```
file_id = GDopen(filename, access_mode);
gd_id = GDattach(file_id, grid_name);
<Optional operations>
status = GDdetach(gd_id);
status = GDclose(file_id);
```

To access several files at the same time, a calling program must obtain a separate id for each file to be opened. Similarly, to access more than one grid data set, a calling program must obtain a separate grid id for each data set. For example, to open two data sets stored in two files, a program would execute the following series of C function calls:

```
file_id_1 = GDopen(filename_1, access_mode);
gd_id_1 = GDattach(file_id_1, grid_name_1);
file_id_2 = GDopen(filename_2, access_mode);
gd_id_2 = GDattach(file_id_2, grid_name_2);
<Optional operations>
status = GDdetach(gd_id_1);
status = GDclose(file_id_1);
status = GDdetach(gd_id_2);
status = GDclose(file_id_2);
```

Because each file and grid data set is assigned its own identifier, the order in which files and data sets are accessed is very flexible. However, it is very important that the calling program individually discard each identifier before terminating. Failure to do so can result in empty or, even worse, invalid files being produced.

6.5 GCTP Usage

The HDF-EOS Grid API uses the U.S. Geological Survey General Cartographic Transformation Package (GCTP) to define and subset grid structures. This section describes codes used by the package.

6.5.1 GCTP Projection Codes

The following GCTP projections are supported for HDFEOS. The projection codes are used in the grid API described in Section 6 below:

(0) Geo gra GCTP_GEO phic (1) Uni ver sal Tra nsv ers e Mer cat GCTP_UTM or

(2) Sta te Pla ne Coo rdi nat е Sys GCTP_SPCS tem (3) Alb ers Con ica 1 Equ al_ GCTP_ALBERS Area (4) Lam ber t Con for mal Con GCTP_LAMCC ic (5) Mer cat GCTP_MERCAT or (6) Pol ar Ste reo gra GCTP_PS phic (7) Pol усо GCTP_POLYC nic (9) Tra nsv ers е Mer cat GCTP_TM or

	(11)
	L	a
	m	b
	e	r
	t	
	A	Z
	i	m
	u	t
	h	a
	1	
	E	q
	u	a
	1	
	A:	r
GCTP_LAM	AZe	a
		(16)
		Si
		nu
		SO
		id
GCTP_SNS	OID	al
	(20)
	Но	
	ti	
	ne	
	Ob	
	li	
	qu	
	е	
	Me	
	rc	
	at	
GCTP_HOM	or	
	(22)
	Sp	
	ac	
	е	
	Ob	
	li	
	qu	
	е	
	Me	
	rc	
	at	
GCTP_SOM	or	

(24)
In
te
rr
up
te
a
GO
e
Но
mo
lo
si
GCTP_GOOD ne
(31)
In
te
ge
ri
ze
d
Si
nu
SO
al Dr
oi
ec
ti
GCTP_ISINUS1 on*
(99)
In
te
ge
ri
ze
d
Si
nu
so ta
ı al
Pr
 0i
ec
ti
GCTP_ISINUS on*

(97	7)	
Cy		
li		
nd		
ri		
ca		
1		
Eq		
ua		
1-		
Ar		
ea		
(±		
or		
EA		
SE		
gr id		
wi		
th		
CO		
rn		
GCTP_CEA ers	5	
		in meters)**
	Chr	
	Cy li	
	nd	
	ri	
	ca	
	1	
	Eq	
	ua	
	1-	
	Ar	
	ea	
	(f	
	or	
	EA	
	SE	
	gr	
	ld	
	W1 + h	
	LI1 GTC	
	91 51 (86	
OCIF_DCEA ()	,0, IU	
		corners in packed degrees, DMS)**

* The Integerized Sinusoidal Projection was not part of the original GCTP package. It has been added by ECS. See *Level-3 SeaWiFS Data Products: Spatial and Temporal Binning Algorithms*. Additional references are provided in Section 2.

** The Cylindrical Equal-Area Projection was not part of the original GCTP package. It has been added by ECS. See Notes for section 6.5.4.

In the new GCTP package the Integerized Sinusoidal Projection is included as the 31st projection. The Code 31 was added to HDFEOS for users who wish to use 31 instead of 99 for Integerized Sinusoidal Projection.

Note that other projections supported by GCTP will be adapted for next HDF-EOS Version as new user requirements are surfaced. For further details on the GCTP projection package, please refer to Section 6.3.5 and Appendix G of the SDP Toolkit Users Guide for the EED Contract, December, 2017, (333-EED2-001, Revision 01).

6.5.2 UTM Zone Codes

The Universal Transverse Mercator (UTM) Coordinate System uses zone codes instead of specific projection parameters. The table that follows lists UTM zone codes as used by GCTP Projection Transformation Package. C.M. is Central Meridian

Zone	C.M.	Range	Zone	C.M.	Range	
0.1	100.7		21	0007		
	171W	180W-1/4W	31	0038	0008-0068	
02	1/IW	1/4W-168W	32	009E	006E-012E	
03	165W	168W-162W	33	0158	012E-018E	
04	159W	162W-156W	34	021E		
05	153W	156W-150W	35	027E		
06	14/W	150W-144W	36	033E	030E-036E	
07	141W	144W-138W	3/	039E	036E-042E	
08	135W	138W - 132W	38	045E	042E-048E	
10	129W	132W-126W	39	USIE	048E-054E	
10 11	123W	126W-120W	40	057E	054E-060E	
	111w	120W - 114W	41 40	063E	060E-066E	
⊥∠ Zerre			42 Zana	009E	DODE-U/ZE	
Zone	C.M.	Kange	Zone	C.M.	Range	
13	105W	108W-102W	43	075E	072E-078E	
14	099W	102W-096W	44	081E	078E-084E	
15	093W	096W-090W	45	087E	084E-090E	
16	087W	090W-084W	46	093E	090E-096E	
17	081W	084W-078W	47	099E	096E-102E	
18	075W	078W-072W	48	105E	102E-108E	
19	069W	072W-066W	49	111E	108E-114E	
20	063W	066W-060W	50	117E	114E-120E	
21	057W	060W-054W	51	123E	120E-126E	
22	051W	054W-048W	52	129E	126E-132E	
23	045W	048W-042W	53	135E	132E-138E	
24	039W	042W-036W	54	141E	138E-144E	
25	033W	036W-030W	55	147E	144E-150E	
26	027W	030W-024W	56	153E	150E-156E	
27	021W	024W-018W	57	159E	156E-162E	
28	015W	018W-012W	58	165E	162E-168E	
29	009W	012W-006W	59	171E	168E-174E	
30	003W	006W-000E	60	177E	174E-180W	

6.5.3 GCTP Spheroid Codes

```
Clarke 1866 (default)(0)
Clarke 1880(1)
Bessel(2)
International 1967(3)
International 1909(4)
WGS 72(5)
Everest(6)
WGS 66(7)
GRS 1980(8)
Airy(9)
Modified Airy(10)
```

```
Modified Everest (11)

WGS 84 (12)

Southeast Asia (13)

Australian National (14)

Krassovsky (15)

Hough (16)

Mercury 1960 (17)

Modified Mercury 1968 (18)

Sphereof Radius 6370997m (19)

Sphereof Radius 6371228m (20)

(2

Sphereof Radius 6371007.181m1)
```

6.5.4 Projection Parameters

	Array Element							
Code & Projection Id	1	2	3	4	5	6	7	8
0 Geographic								
1 U T M	Lon/Z	Lat/Z						
2 PGSd_SPCS			Spheroid	Zone				
3 Albers Conical	Smajor	Sminor	STDPR1	STDPR2	CentMer	OriginLat	FE	FN
Equal_Area								
4 Lambert Conformal C	Smajor	Sminor	STDPR1	STDPR2	CentMer	OriginLat	FE	FN
5 Mercator	Smajor	Sminor			CentMer	TrueScale	FE	FN
6 Polar Stereographic	Smajor	Sminor			LongPol	TrueScale	FE	FN
7 Polyconic	Smajor	Sminor			CentMer	OriginLat	FE	FN
9 Transverse Mercator	Smajor	Sminor	Factor		CentMer	OriginLat	FE	FN
11 Lambert Azimuthal**	Smajor	Sminor			CentLon	CenterLat	FE	FN
Lambert Azimuthal	Sphere				CentLon	CenterLat	FE	FN
16 PGSd_SNSOID**	Smajor	Sminor			CentMer			
PGSd_SNSOID	Sphere				CentMer			
20 Hotin Oblique Merc A	Smajor	Sminor	Factor			OriginLat	FE	FN
20 Hotin Oblique Merc B	Smajor	Sminor	Factor	AziAng	AzmthPt	OriginLat	FE	FN
22 Space Oblique Merc A	Smajor	Sminor		IncAng	AscLong		FE	FN
22 Space Oblique Merc B	Smajor	Sminor	Satnum	Path			FE	FN
24 Interrupted Goode	Sphere							
97 CEA utilized by EASE grid (see Notes)	Smajor	Sminor			CentMer	TrueScale	FE	FN
98 BCEA utilized by EASE grid (see Notes)	Smajor	Sminor			CentMer	TrueScale	FE	FN

Table 6-2. Projection Transformation Package Projection Parameters (1 of 2)

** Lambert Azimuthal and Sinusoidal supports both spherical and WGS84 ellipsoidal Earth model

	Array Element						
Code & Projection Id	9	10	11	12	13		
0 Geographic							
1 U T M							
2 PGSd_SPCS							
3 Albers Conical Equal_Area							
4 Lambert Conformal C							
5 Mercator							
6 Polar Stereographic							
7 Polyconic							
9 Transverse Mercator							
11 Lambert Azimuthal							
Lambert Azimuthal							
16 PGSd_SNSOID							
PGSd_SNSOID							
20 Hotin Oblique Merc A	Long1	Lat1	Long2	Lat2	zero		
20 Hotin Oblique Merc B					one		
22 Space Oblique Merc A	PSRev	SRat	PFlag	HDF-EOS Para	zero		
22 Space Oblique Merc B				HDF-EOS Para	one		
24 Interrupted Goode							
31 & 99 Integerized Sinusoidal	NZone		RFlag				
97 CEA utilized by EASE grid (see Notes)							
98 BCEA utilized by EASE grid (see Notes)							

Table 6-3. Projection Transformation Package Projection Parameters Elements

Where,

Longi
e
tude
o f
any
point
i n
the
UTM
zone
o r
zero.
Ιf
zero,
а
zone
code
must
b e
specif
Lon/Zied
Lon Zieu.
Latitu
de ef
de of
any any
any point
any point in the
any point in the UTM
any point in the UTM zone
any point in the UTM zone
any point in the UTM zone o r
any point in the UTM zone o r zero.
any point in the UTM zone o r zero. I f
any point in the UTM zone o r zero. I f zero,
any point in the UTM zone o r zero. I f zero, a zone
any point in the UTM zone o r zero. I f zero, a zone code
any point in the UTM zone o r zero. I f zero, a zone code
any point in the UTM zone o r zero. I f zero, a zone code must
any point in the UTM zone o r zero. I f zero, a zone code must b e
any point in the UTM zone o r zero. I f zero, a zone code must b e specif

	Se
	mi-
	maj
	or
	axis
	of
	elli
	psoi
	d. I
	f
	zero
	, (1
	Ke
	180
	0 in
	1 II met
	ers
	is
	25511
	med
	. It
	is
	reco
	mm
	end
	e d
	that
	expl
	icit
	valu
	е,
	rath
	er
	than
	zero
	, 18
	use
	u for
	Sm
Smain	
Sinajoi	ajoi.

Ecc		
entr		
icit		
У		
squ		
are		
d		
o f		
the		
elli		
psoi		
d if		
less		
tha		
n		
one,		
i f		
zer		
o, a		
sph		
eric		
al		
for		
m		
i s		
ass		
um		
ed,		
or		
11		
gre		
ater		
tha		
n		
one,		
the		
;		
ı- min		
 0 r		
avie		
of		
elli		
nsoi		
Ч Рзот		
u.		

I t
sho
uld
be
not
e d
that
а
neg
ativ
e
sph
ere
cod
e
sho
uld
be
use
d
in
ord
er
to
hav
e
user
spe
cifi
e d
Sm
ajor
and
Smi
nor
be
acc
epte
d
b y
GC
TP,
oth
erw
ise

def
ault
elli
psoi
d
Sm
ajor
and
Smi
nor
will
be
use
Sminor d.

	Rad
	ius
	of
	refe
	ren
	ce
	sph
	ere.
	If
	zer
	0,
	637
	099
	7
	met
	ers
	i s
	use
	d .
	It
	i s
	rec
	om
	me
	nde
	d
	that
	exp
	licit
	val
	ue,
	rath
	er
	tha
	n
	zer
	0,
	i s
	use
	d
	for
	Sph
Sphere	ere.

	La
	tit
	ud
	e
	of
	the
	fir
	st
	sta
	nd
	ard
	par
	all
STDPR1	el
	La
	tit
	ud
	e
	of
	the
	sec
	on
	d
	sta
	nd
	ard
	par
	all
STDPR2	el

L on

- gi
- tu
- de
- of
- th
- e
- ce nt
- ra
- 1
- m
- er
- id

CentMer ian

- L a ti t u d e 0 f t h e р r 0 j e c ti
- 0 n
- 0 ri

g OriginLat in

False easting in the same units as the semi-

major

FE axis

False northing in the same units as the semimajor FN axis

TrueScale Latitude of true scale

Lo ngi tud e do wn bel ow pol e of

LongPol map

		Scal
		e
		facto
		r at
		centr
		a l
		meri
		dian
		(Tra
		nsve
		rse
		Mer
		cator
) or
		cent
		e r
		o f
		proje
		ction
		(Hot
		ine
		Obli
		que
		Mer
Fac	ctor	cator)
		L
		on
		git
		ud
		e
		of
		ce
		nt
		er
		of
		pr
		oj
		ec
a		, •

CentLon tion

CenterLat Latitude of center of projection

	Long
	itude
	of
	first
	noint
	on
	onto
	cente r
	[]:
	(Hoti
	ne
	Obli
	que
	Merc
	ator,
	form
Long1	at A)
	Long
	itude
	o f
	seco
	n d
	point
	o n
	cente
	r
	line
	(Hoti
	ne
	Obli
	que
	Merc
	ator,
	frmt
Long2	A)

Latitud e of first point o n center line (Hotin e Obliqu e Mercat or, format Lat1 A) Latitud e of second point o n center line (Hotin e Obliqu e Mercat or, format Lat₂A)

Azi	
mut	
h	
angl	
e	
east	
o f	
nort	
h	
o f	
cent	
er	
line	
(Ho	
tine	
Obli	
que	
Mer	
cato	
r,	
frmt	
AziAng B)	

L on gi tu de of ро in t on ce nt ra 1 m er id ia n W he re az i m ut h oc cu rs (Η ot in e 0 bl iq ue Μ er ca to r, fo

r
m
at
AzmthPt B)
Incl
inati
o n
o f
orbi
t at
asce
ndin
g
nod
е,
cou
nter
-
cloc
kwi
s e
fro
m
equ
ator
(SO
Μ,
for
mat
IncAng A)

	L
	on
	git
	ud
	e
	of
	as
	ce
	nd
	in
	g
	or
	bit
	at
	eq
	ua
	to
	r
	(S
	0
	Μ
	,
	fo
	r
	m
	at
AscLo	ng A)
	Daria
	d of
	satell
	ite
	revol
	ution
	i n
	minu
	tes
	(SO
	M,
DCD	10rm
rskev	at A)

Satellit e ratio t o specify the start and end point of x,y values o n earth surface (SOM, format A -for Landsa t use 0.5201 SRat 613) End o f path flag for Lands at: 0 = start o f path, 1 = end o f path (SOM , frmt PFlag A)
Га
nds
nus
at
Sat
elli
te
Nu
mb
er
(S
0
М,
for
ma
t
Satnum B)
. .
Landsa
Landsa t Path
Landsa t Path Numbe
Landsa t Path Numbe r (Use
Landsa t Path Numbe r (Use WRS-
Landsa t Path Numbe r (Use WRS- 1 for
Landsa t Path Numbe r (Use WRS- 1 for Landsa
Landsa t Path Numbe r (Use WRS- 1 for Landsa t 1, 2
Landsa t Path Numbe r (Use WRS- 1 for Landsa t 1, 2 and 3
Landsa t Path Numbe r (Use WRS- 1 for Landsa t 1, 2 and 3 and
Landsa t Path Numbe r (Use WRS- 1 for Landsa t 1, 2 and 3 and WRS-
Landsa t Path Numbe r (Use WRS- 1 for Landsa t 1, 2 and 3 and WRS- 2 for
Landsa t Path Numbe r (Use WRS- 1 for Landsa t 1, 2 and 3 and WRS- 2 for Landsa
Landsa t Path Numbe r (Use WRS- 1 for Landsa t 1, 2 and 3 and WRS- 2 for Landsa t 4 and
Landsa t Path Numbe r (Use WRS- 1 for Landsa t 1, 2 and 3 and WRS- 2 for Landsa t 4 and 5)
Landsa t Path Numbe r (Use WRS- 1 for Landsa t 1, 2 and 3 and WRS- 2 for Landsa t 4 and 5.)

(SOM, format Path B)

Num	
ber	
o f	
equa	
11 y	
spac	
e d	
latitu	
dinal	
zone	
S	
(row	
s);	
must	
b e	
two	
o r	
large	
r	
and	
Nzone even	

Right justify colum n s flag i s used t o indica t e what to do i n zones with a n odd numb er of colum ns. If it has a value of 0 or 1, i t indica tes the extra colum n is o n the right (zero) left (one) of the projec tion Y axis. If the flag is set to 2 (two),

the numb er of colum ns are calcul ated s o there are alway S an even numb er of colum ns in each

Rflag zone.

Notes:

- Array elements 14 and 15 are set to zero.
- All array elements with blank fields are set to zero.

All angles (latitudes, longitudes, azimuths, etc.) are entered in packed degrees/ minutes/ seconds (DDDMMMSSS.SS) format.

The following notes apply to the Space Oblique Mercator A projection:

- A portion of Landsat rows 1 and 2 may also be seen as parts of rows 246 or 247. To place these locations at rows 246 or 247, set the end of path flag (parameter 11) to 1--end of path. This flag defaults to zero.
- When Landsat-1,2,3 orbits are being used, use the following values for the specified parameters:

0990 0503 Parameter 4 1.2

```
128.
           87
           degr
           ees -
           (360)
           /251
           *
           path
           num
           ber)
           i n
           pack
           e d
           DMS
           form
Parameter 5 at
           103.
           2669
Parameter 9 323
            0.5
            201
Parameter 10613
```

• When Landsat-4,5 orbits are being used, use the following values for the specified parameters:

Parameter 4 098012000.0
Parameter 5 129.30 degrees - (360/233 * path number) in packed DMS format
Parameter 9 98.884119
Parameter 10 0.5201613

The following notes apply for BCEA and CEA projections, and EASE grid :

HDFEOS 2.7 and 2.8: Behrmann Cylindrical Equal-Area (BCEA) projection was used for 25 km global EASE grid. For this projection, the Earth radius is set to 6371228.0m and latitude of true scale is 30 degrees. For 25 km, global EASE grid the following apply:

Grid Dimensions:

Width 1383

Height 586

Map Origin:

Column (r0) 691.0

Row (S0) 292.5

Latitude 0.0 Longitude 0.0 Grid Extent: Minim um Latitud e 86.72 S Maxim um Latitud e 86.72 Ν Minim um Longit ude 180.00 W Maximum Longitude 180.00E

Actual grid cell size 25.067525km

Grid coordinates (r,s) start in the upper left corner at cell (0.0), with r increasing to the right and s increasing downward.

HDFEOS 2.8.1 and later: Although the projection code and name (tag) kept the same, BCEA projection was generalized to accept Latitude of True Scales other than 30 degrees, Central Meridian other than zero, and ellipsoid earth model besides the spherical one with user supplied radius. This generalization along with the removal of hard coded grid parameters will allow users not only subsetting, but also creating other grids besides the 25-km global EASE grid and having freedom to use different appropriate projection parameters. With the current version one can create the above mentioned 25-km global EASE grid of previous versions using:

Grid Dimensions: Width 1383 Height 586 Grid Extent: UpLeft Latitud e 86.72 LowRi ght Latitud e -86.72 UpLeft Longit ude -180.00

LowRight Longitude 180.00

Projection Parameters:

6371.2280/25.067525 = 254.16263
 6371.2280/25.067525 = 254.16263
 0.0
 30000000.0
 691.0
 -292.5

Also one may create 12.5 km global EASE grid using:

Grid Dimensions:

Width 2766

Height 1171

Grid Extent:

UpLeft Latitud e 85.95 LowRi ght Latitud e -85.95 UpLeft Longit ude -179.93

LowRight Longitude 180.07

Projection Parameters:

- 1) 6371.2280/(25.067525/2) = 508.325253
- 2) 6371.2280/(25.067525/2) = 508.325253
- 5) 0.0
- 6) 3000000.0
- 7) 1382.0
- 8) -585.0

Any other grids (normalized pixel or not) with generalized BCEA projection can be created using appropriate grid corners, dimension sizes, and projection parameters. Please note that like other projections Semi-major and Semi-minor axes will default to Clarke 1866 values (in meters) if they are set to zero.

HDFEOS 2.10 and later: A new projection CEA (97) was added to GCTP. This projection is the same as the generalized BCEA, except that the EASE grid produced will have its corners in meters rather than packed degrees, which is the case with EASE grid produced by BCEA.

HDFEOS 2.19 and later : The Lambert Azimuthal Equal area projection was generalized to support WGS84 ellipsoidal Earth model in addition to the spherical model that was supported before. This generalization was needed to support EASE GRID 2.0 used for SMAP products.

HDFEOS 2.20 and later : The Sinusoidal projection was generalized to support WGS84 ellipsoidal Earth model in addition to the spherical model that was supported before. This generalization was needed to support EASE GRID 2.0 used for SMAP products and for Datum/Ellipsoid conversions in HDF-EOS to Geotiff conversion Tool.

This page intentionally left blank.

A.1 Installation Procedures

A.1.1 Preliminary Step

Before installing HDFEOS, you must already have installed THG HDF, Version 4.2.13 or 4.2.15 on your host. Please see the SDP Toolkit Users Guide for the EED-2 Contract, Section 5 for instructions on installing both the Toolkit and HDF. See also: <u>https://support.hdfgroup.org/ftp/HDF/releases/</u> for instructions on how to access HDF libraries.

A.1.2 Unpacking the Distribution File

Sele		
ct a		
locat		
ion		
for		
the		
HD		
FEO		
S		
dire		
ctor		
v		
tree.		
Ins		
talli		
n g		
HD		
FEO		
S		
alon		
e		
requ		
ires		
a		
disk		
parti		
tion		
with		
a t		
least		
45		
Mb		
o f		
free		
spac		
1) e.		

Сор
у
the
file
hdf-
eos2
-3.0-
src.
tar.
gz
to
the
targ
et
dire
ctor
У
by
typi
ng
the
com
man
d:
2)
cp hdf-eos 2-3.0-src.tar.gz <target-dir></target-dir>

where <target-dir> is the full pathname of your target directory.

Set	
your	
defa	
ult	
dire	
ctor	
y to	
the	
targ	
e t	
dire	
ctor	
У	
b y	
typi	
n g	
the	
com	
man	
3) d:	
c d	
<target< td=""><td></td></target<>	
-dir>	
Unc	
omp	
ress	
ine	
and	
exti	
tho	
cont	
onts	
b v	
U y tvni	
rypi ng	
n g the	
man	
man	
$(1) d \cdot$	

tar zxvf hdfeos2-3.0src.tar. gz

This will create a subdirectory of the current directory called 'hdfeos2-3.0'. This is the top-level HDFEOS directory, which contains the full HDFEOS directory structure.

A.1.3 Starting the Installation Procedure

HDF-EOS is built and installed using autotools as outlined in section A.1.3.1.

Insta Ilatio n Usin g Insta Ilatio n Scrip A.1.3.1 ts

Building/Installing HDF-EOS2 using Autoconf/Automake

The HDF-EOS2 library requires HDF4 library version 4.2.13 or later. You can download HDF4

from the HDF Group:

https://confluence.hdfgroup.org/display/support/Download+HDF4

or, depending upon your system, you may be able to install it from a package. The HDF4 library may depend upon other libraries, such as szip, jpeg, and z (compress). The HDF-EOS2 configure script will do its best to determine these dependencies and find the appropriate libraries, but it may occasionally need help. Please refer to the 'Troubleshooting' section in the README document in the 'docs' directory in the HDF-EOS source directory tree.

After downloading and unpacking the tar file, 'cd' into the hdfeos directory and type

./configure

This will run a series of tests to determine the necessary library dependencies, and configure the makefiles accordingly. The configure script will output a summary of the configuration options at completion. These can be useful for troubleshooting.

By default, the HDF-EOS2 libraries and include headers will be installed in /usr/local. This can be changed by using the --prefix option when running configure, e.g.

./configure --prefix=/custom/install/location

A number of other options may be provided to the configure script. You can get details of these options using the command:

./configure --help

To build HDF-EOS2, simply type

make

from the hdfeos directory.

The HDF-EOS2 library comes with some tests. You can run these using the command

make check

from the hdfeos directory. These tests are primarily for internal testing and are not part of the official delivery. However, they may provide useful examples. USE AT YOUR OWN RISK.

To install HDF-EOS2, simply type

make install

from the hdfeos directory. You need to make sure you have the necessary permissions to install the files in the chosen location.

Build HDF-EOS2 using Visual Studio

For building on Windows, the HDF-EOS2 comes with a Visual Studio 2019 project that can be used to build native Windows versions of the libraries. This combines both the GCTP and HDF-EOS2 code into a single library. To build on Windows, after starting up Visual Studio load the HDF-EOS2 project file in the vs2019/HDF-EOS2 directory. Then select Build -> Build HDF-EOS2 from the menu, or type <ctrl> B.

Fortran API

The HDF-EOS2 library can build a FORTRAN API to provide access to HDF-EOS2 functions from FORTRAN programs. By default, the FORTRAN API is disabled. To enable the FORTRAN API on Autoconf systems, use the

--enable-fortran

option. The configure script will attempt to determine the appropriate API naming convention used by the fortran compiler automatically. You can still build the FORTRAN API on Autotools systems even if you do not have access to a FORTRAN compiler. To do this, do not use the --enable-fortran option, but instead use the options listed below for enabling the API on windows. e.g.

./configure CPPFLAGS="-DFORTRAN_API -DFORTRAN_API_UPPERCASE DFORTRAN_API_SUFFIX=_"

For building the FORTRAN API on Windows using Visual Studio, you will need to configure some additional compiler options. These are:

FORTRAN_API Just add this as a preprocessor definition (it does not need a specific value)

FORTRAN_API_UPPERCASE Add this as a preprocessor definition if your FORTRAN compiler uses upper-case for external functions names (e.g. ifort)

FORTRAN_API_LOWERCASE Add this as a preprocessor definition if your FORTRAN compiler uses lower-case for external functions names.

FORTRAN_API_PREFIX Add this as a preprocessor definition if your FORTRAN compiler adds a prefix of any sort to external function names. The value of this definition should be the character prefix (e. g. _)

FORTRAN_API_SUFFIX Add this as a preprocessor definition if your FORTRAN compiler adds a suffix of any sort to external function names. The value of this definition should be the character suffix (e. g. _)

The HDF-EOS2 Visual Studio project file is preconfigure with FORTRAN_API and FORTRAN_API_UPPERCASE, to suit the Intel ifort compiler. Note that a FORTRAN compiler is not actually needed in order to generate the FORTRAN API.

A.1.3.2

For issues with configuring or building HDF-EOS, please refer to the 'Troubleshooting' section in the README document in the 'docs' directory in the HDF-EOS source directory tree.

A.2 User Feedback Mechanism

The mechanism for handling user feedback, documentation and software discrepancies, and bug reports follows:

1) The following accounts at the ECS Riverdale facility have been set up for user response:

```
sdps-
suppo
rt@ea
rthdat
a .
nasa.
gov
```

2) Users will e-mail problem reports and comments to the above account. Responses will be prioritized

Ι

3) n order to help expedite responses, we request the following information be supplied with problem re

Name:

Date:

EOS Affiliation (DAAC, Instrument, Earth Science Data and Information System (ESDIS), etc.):

Phone No.: Development Environment: Computing Platform: Operating System: Compiler and Compiler Flags: Tool Name: Problem Description:

(Pl			
eas			
e			
inc			
lud			
e			
exa			
ct			
inp			
uts			
to			
and			
out			
put			
S			
fro			
m			
the			
too			
lkit			
call			
,			
inc			
lud			
ıng			
err			
or			
cod			
e			
ret			
um			
eu by			
0 y the			
fun			
cti			
on			
oli, plu			
8 S			
exa			
ct			
err			
or			
me			
ssa			

ge			
ret			
urn			
ed			
wh			
ere			
app			
lica			
ble.)			
Su			
gge			
ste			
d			
Re			
sol			
uti			
on			
(in			
clu			
de			
cod			
e			
fix			
es			
or			
wo			
rka			
rou			
nds			
if			
app			
lica			
ble			
):			

Ι

4) n addition to the above email address, a list server has also been set up for users. The address is: SDF

Abbreviations and Acronyms

algorith m integrati o n & AI&T test		
Atmosph eric Infrared AIRS Sounder		
applicatio n program API interface		
Advan c e d Space borne Therm a 1 Emissi o n an d Reflec tion Radio		
ASTER meter Consu Itative Com mittee o n Space Data Syste		
CCSDS ms		

Contrac t Data Require ments CDRL List CCSDS d a y segmente d time CDS code Cloud s and Earth Radia n t Energ у CERES System configurati o n manageme CM nt comme rcial offtheshelf COTS software constant and unit conversi CUC ons CCSDS unsegme nted time CUC code

distribu ted active archive DAAC center databas e manag ement DBMS system distribute d computin g environm DCE ent Digital Chart of the DCW World digital elevation DEM model digital terrain DTM model Earth centered ECR rotating EOSDIS Core ECS System Earth Resource S Observati o n Systems (EROS) Data **EDC** Center

ECS Data Handli n g EDHS System EOSDI S Data and Operati ons EDOS System Earth Observin EOS g System EOS AMProje c t (mor ning space craft EOSAM series) Earth Obse rving Syste m Data and Infor mati o n EOSDIS System

EOS ΡM Proje c t (after noon space craft EOSPM series) Earth Scienc e Data and Inform ation System (GSFC Code ESDIS 505) flight dynamics FDF facility field of FOV view file transfer ftp protocol geocoordinat e transform GCT ation general cartogra phic transfor mation GCTP package GD grid

Global Positioni n g GPS System Goddar d Space Flight GSFC Center hierarchi cal data HDF format HDF-EOS to GeoTIFF Conversi HEG on Tool Hughes Informat ion Technol ogy Corporat HITC ion hypertext transport http protocol integratio I&T n & test interface control ICD document interactive data IDL language Internet IP protocol

Investiga tor Working IWG Group Jet Propulsion JPL Laboratory Langley Researc LaRC h Center Lightening Imaging LIS Sensor mainten ance a n d operatio M&O ns metadata configura MCF tion file MET metadata Mode rate-Resol ution Imagi n g Spectr oradio MODIS meter Marsha 11 Space Flight MSFC Center

Nationa 1 Aerona utics and Space Admini NASA stration Nationa 1 Center for Superc ompute r Applica NCSA tions netw ork com mon data form netCDF at Nation a 1 Geoph ysical Data NGDC Center National Meteorol ogical Center NMC (NOAA) object descripti o n ODL language process PC control

process control PCF file plannin & g data producti o n PDPS system product generatio n executive (formerly product generatio n executabl PGE e) Portabl e Operat ing System Interfa ce for Compu ter Enviro **POSIX** nments PT point quality QA assurance relati onal datab ase mana geme n t RDBMS system

remote procedur RPC e call recom mende d require ments **RRDB** database Science Computin SCF g Facility science data SDP production science data processi n g SDPF facility Silicon Graphics Incorporat SGI ed status message SMF file Soil Moistur e Active **SMAP** Passive Symmetr ic Multi-**SMP** Processing Space Oblique SOM Mercator

Science Process ing Support SPSO Office Special Sensor for Microw a v e SSM/I/Imaging SW swath Internation al Atomic TAI Time to be determin TBD ed Tracki n g and Data Relay Satelli t e TDRSS System The HDF THG Group Tropic a 1 Rainfal 1 Measu ring Missio n (joint US – TRMM Japan)

Upper Atmosp here Researc h **UARS** Satellite Univers ity Corpor ation for Atmosp heric UCAR Research universal reference URL locator United States Naval Observ USNO atory universal UT time Coordina t e d Universal UTC Time univers al time correlati o n UTCF factor universal transvers e UTM mercator vector product VPF format

World Wide WWW Web

^[1] "Co-latitude" may be substituted for "Latitude."