SDP Toolkit Primer for the ECS Project

1.Introduction
1.1 Purpose of Toolkit

The purpose of the SDP Toolkit is primarily (1) to provide an interface to the ECS system, including Planning and Data Production System (PDPS),
Communications System Management (CSMS) and Information Management, (2) to allow science software to be portable to different platforms at the
DAAC, (3) to reduce redundant coding at the SCF, and (4) to provide value added functionality for science software development. The SDP Toolkit
consists of a set of fully tested, fast, efficient and reliable C and FORTRAN language functions, customized for application to ECS.

A brief overview of the operations concept of the Toolkit follows. The Toolkit divides into two groups: Mandatory tools, which the system requires in

science software, with checking to occur at DAAC Integration & Test time; and Optional tools, whose primary intention is to save SCF development
effort by reducing redundancy.

1.2. Mandatory Tools

The following tools are Mandatory:

At the lowest level are the Error and Status Message (SMF, for Status Message Facility) tools, which provide general error handling, status log
messaging, and interface to CSMS services (which are implemented as email and ftp services at the SCF). Essentially all Toolkit functions call the
SMF tools for error handling; science software may also use most of the SMF functions. (The Toolkit takes no action itself regarding errors itself; this is
left to the science software.)

At the next level are the Process Control (PC) tools, which provide the primary interface to the Planning and Data Production System (PDPS). A major
use of these tools is to access physical filenames and file attributes; in addition, they retrieve user-defined parameters. Several Toolkit functions call
PC tools.

Generic Input/Output (I0_Gen) tools are at the next level; these tools provide the means to open and close support, temporary and intermediate
duration files. Native C and FORTRAN functions perform the actual reads and writes.

Memory allocation (MEM) tools consist of two groups: the first consists of simple wrappers on native C functions, the purpose being to track memory
usage in the SDPS; the second consists of "shared memory" tools, which enable the sharing of memory among executables within a PGE.

The rest of the Mandatory tools are higher level, in that they depend on at least some of the lower level tools:
Level 0 access (I0_LO) tools access Level 0 data.

Metadata (MET) access tools allow science software to access, alter, write and append metadata.
Spacecraft ephemeris and attitude access (EPH) tools read ephemeris and attitude data.

Time and Date (TD) tools perform time and date conversions between selected time systems.

1.3 Optional Tools

The remaining tools are Optional:

Ancillary data Access (AA) functions access such data as NMC data and Digital Elevation (DEM) data.

Celestial Body Position (CBP) tools locate the Sun, the Moon and the planets.

Coordinate System Conversion (CSC) tools allow coordinate conversions between celestial reference, spacecraft body referenced, spacecraft orbital
referenced, and Earth frames. They also perform related tasks such as locating the sub-satellite point (ground track) and finding the zenith and
azimuth of vectors at Earth surface.

Constant and Unit Conversion (CUC) tools allow access to physical constants and unit conversions.

Digital Elevation Model (DEM) tools provide access to HDF-EOS DEM datasets. This will be the primary production DEM data.

The IMSL package provides mathematical and statistical support.

Graphics Support (if any, in the production environment) is TBD.

There are also some Test Tools, which are for use during development at the SCF only. These include an ephemeris and attitude simulator and a
Level O file simulator.

For the most part the Optional tools are independent of each other, though all depend on the lower level tools, including SMF (all tools), PC, 10_Gen,
and TD.

1.4 Toolkit Languages

The Toolkit is written in the C language. A macro package provides bindings to the C code from FORTRAN 77 (with a few exceptions coded directly in
F77). These bindings appear to have no effect on processing speed. Where possible, the same Application Program Interface (API), i.e., calling
sequence, has been used for both C and FORTRAN. Support of FORTRAN 90 requires no special bindings, since FORTRAN 77 is a subset of
FORTRAN 90; testing the Toolkit with an FO0 compiler confirms this.

Special note regarding FORTRAN: Programmers are strongly urged to include the IMPLICIT NONE statement at the beginning of every FORTRAN
module. This prevents many types of error; in particular, there is less chance you could omit an include file needed for a Toolkit function.

1.5 Purpose of This Document

This document refers to those functions delivered as of the Release B.0 SCF Toolkit (April 1997). Each successive delivery increments the previous
delivery with additional functionality, while maintaining a consistent user API. The document will be updated with each successive software delivery.

A user's guide (Release B.0 SCF Toolkit Users Guide, April1997) accompanies the Toolkit delivery. The intent of this guide was to serve as the sole
documentation for use of the Toolkit. However, after review, several instrument teams pointed out that it was not useful as a simple introduction to the
Toolkit; rather, it resembled the detail and complexity of Unix "man" pages. This document intends to fill that gap.

The purpose of this document is to provide a simple, easy to use guide to Toolkit function usage, through a step-by-step format, including many
examples in C and FORTRAN. The intended audience is both science software programmers and their supervisors. After reading it, the user will be
able to use the Toolkit API in constructing instrument data production code or incorporating Toolkit calls into heritage code.

This document is necessarily not a comprehensive one; the TK5.2 version of the Users Guide is the definitive source. It contains details such as
Toolkit installation instructions, requirements trace, detailed description of inputs and output data and parameters, and so on. For purposes of this
document, we assume that the user has a copy of the Toolkit already installed on his/her system, including especially the setting of Toolkit
environment variables.

1.6 Document Format

Each of the tool groups delivered to date is listed in its own section. An overview sub-section explains the general usage of the tool group. For each
tool, we include: a short explanation of what it's for; step-by-step guide to usage by example, for C and FORTRAN; and a Notes section which
includes dependencies on other Toolkit functions, files and environment variables. The examples given are for illustrative purposes only; for
compilable examples, please refer to the software test drivers that are part of the Toolkit delivery package.

The Status/Message (SMF), Process Control (PC), and Ancillary Data Access (AA) tool groups are exceptions to the format, in that they need
extensive explanation regarding their use as a whole; their "Overview" sections are very long.

2. Error and Status Message (SMF) Tools

2.1 Overview
2.1.1 Introduction

The Error/Status Message (a.k.a. SMF, for "Status Message Facility") Tools are the lowest level of the Toolkit, since nearly all of the other Toolkit
functions call these tools. Their purpose is to provide an error and status message handling mechanism for use in science software (and in Toolkit
functions), and to provide means to send log files, informational messages and output data files to DAAC personnel or to remote users.

In this overview section, we walk you through the procedure of constructing your own error/status messages step-by-step, then show their application
in log files, your own code, and in the Toolkit itself.

2.1.2 Constructing Your Own Error/Status Messages
This section explains how to use the Toolkit to construct files containing error and status messages, which your code can access at runtime.

The basic process of constructing these files consists of 2 steps: constructing the status message text file with an editor, then running the smfcompile
utility provided in the Toolkit, before compiling and executing your code.

2.1.2.1 The status message text file
The first step is to type in your own messages into the status message text file using a text editor.

You may use as many status message text files as you like, provided you use a different seed number for each file (see "%SEED" field below).
For purposes of internal Toolkit efficiency, it is recommended that each set of error messages that correspond to a given set of modules in your code
be defined in a separate file -- it is not efficient to mix them across module groupings, nor to put them all in one big file. For example, all messages
pertaining to your geolocation processing might be in one file, and all related to ancillary data processing in another.

These files always have the suffix ".t". We present an example of this file, adapted from a prototype of the Toolkit that uses heritage AVHRR/Land
Pathfinder code from GSFC. This file is also given in Appendix A of this document. These messages are examined further in the following sections.

Status Message Text File for Tool kit AVHRR/ Land Pat hfi nder
prototype
#

% NSTR = AVHRR
9% ABEL = PATHFI NDER
YSEED = 99
PATHFI NDER_F_OPEN_BI NARY_FI LE FATAL_ERROR...opening binary file
PATHFI NDER_F_MEM ALLOC_FAI L FATAL ERROR...al |l ocating nenmory %
PATHFI NDER_F_OPEN_ANC FI LE FATAL_ERROR. . . %
PATHFI NDER_W CLOSE_GAC FI LE WARNI NG. . . coul d not close GAC file
PATHFI NDER_W OZONE_FI LE_M SSI NG Ozone file not found

:: PATHFI NDER_A_ALT_FI LE_USED
PATHFI NDER_A ALT_FI LE_USED Alternate file used
PATHFI NDER_W EPH_FI LE_NOT_FOUND Epheneris file not found

:: PATHFI NDER_A ALT_FI LE_USED
PATHFI NDER_W NO_LOG FI LES WARNI NG Probl em sending log files

PATHFI NDER_N_PROCESSI NG_DONE SUCCESS: processing conplete at %

https://git.earthdata.nasa.gov/rest/git-lfs/storage/DAS/sdptoolkit/b233846c983d7a9c2d26f4800f1c43f00e0ea243ea97bb31426aa9f52bf9ec40?response-content-disposition=attachment%3B%20filename%3D%22UG.pdf%22%3B%20filename*%3Dutf-8%27%27UG.pdf

2.1.2.2 Constructing the status message text file header

The first 3 lines of this file are coments. The next 3 lines are required. They may appear only once per
file, and rmust appear in this order.

% NSTR = AVHRR
The "9 NSTR' field is your instrunment nane.
9% ABEL = PATHFI NDER

The label in the "9AABEL" field is arbitrary (see label belowin this section)

Both of the above fields must consist of 3 to 10 upper case letters.
YSEED = 99

The "¥BSEED' field is a seed nunber assigned to you by ECS/ SDPS. Mst teans have been allocated 5,000 seed
values in a specified range. The purpose of seed nunbers is to ensure unique error nessages for each
instrunent team or devel opnent group.

Given the example here, the name of the status message text file containing all of this information is recommended to be "AVHRR_99.t".
2.1.2.3 Constructing the status definitions: Simple message

PATHFI NDER_F_OPEN BI NARY_FILE FATAL_ERROR. ..opening binary file

The remainder of the file contains the definition of your error and status messages. Each consists of a single status definition, of which there may be
up to 510 per file. (If you need more, just make another file with a new "%LABEL".) Status definitions may span several lines, as whitespace is
ignored. Each status definition consists of two parts.

PATHFI NDER_F_OPEN_BI NARY_FI LE FATAL_ERRCR .. opening binary file

The first part, the mnemonic label, is what you will pass to the error/status reporting functions in your code. It consists of 3 tokens, and may consist of
up to 30 uppercase letters and underscores.

PATHFI NDER_F_OPEN_BI NARY_FI LE FATAL_ERRCR .. opening binary file

The first token in the mnemonic label must be identical to the "%LABEL" field, i.e., the label. This provides the means to separate messages by
functional groups in the science software -- each group would have its own status message (".t") file, with the "%LABEL" field providing the group ID.

PATHFI NDER_F_OPEN BI NARY_FILE FATAL_ERROR. ..opening binary file

The second token in the mnemonic label is the status level. The following table contains a list of the possible levels. The order listed in this table is
significant.

Table. Error/Status Message Level s.

Level Nane Description

Success Normal return val ue

Action For retrieving a string indicating action taken
Message Message returned by Tool kit

User infornation Infornational nmessage generated by user
Notice E.g., for data availability notices

Warni ng Possi bl e problemin program

Error Error in program

Fatal error Fatal error in program

MMEZCE>0

In our example the level of the message is "_F_", or fatal error. Note that the Toolkit itself takes no action based on the status level; that is the
province of the science software. See the PGS_SMF_Test*Level(sec. 2.2.12) tool sub-group in the Tool Description section for an explanation of how
to utilize these levels. (Note that "Action” is not a valid status level.)

PATHFI NDER_F_OPEN _BI NARY_FI LE FATAL_ERRCR...opening binary file

The third token in the mnemonic label indicates the content of the message.

PATHFI NDER_F_OPEN BI NARY_FI LE FATAL_ERRCR...opening binary file

The second part of the line entry in the status message text file, the message string, is the actual text that gets printed. It consists of up to 240 ASCII
characters. Any whitespace is reduced to a single space.

What happens to the entries in the status message text file is the subject of the next section. A few more examples of status message text file entries
are in order first.

2.1.2.4 Constructing the status definitions: Message with runtime value added

PATHFI NDER_F_MEM ALLOC FAIL FATAL ERRCR. ..allocating menory %

This example shows the possibility of adding the value of a variable to a message string, through the C language format specifier %s. See PGS_SMF_
SetDynamicMsg(sec. 2.2.9) in the Tool Description section for the method for doing this. (The FORTRAN 77 implementation of this is under study at
this writing.)

2.1.2.5 Constructing the status definitions: Action message

PATHFI NDER_A ALT_FI LE_USED Alternate file used

This example shows how to implement action messages in the status message text file. Action messages are simply a convenient way to specify in
the status messages the action taken in response to a condition. It is easiest to explain this by example.

PATHFI NDER_W OZONE_FI LE_M SSI NG Ozone file not found ::PATHFI NDER A ALT_FI LE_USED
(Note: All of the above must appear on a single line)

Above is an example action definition.

PATHFI NDER A ALT FI LE_USED

is the action label, with level "_A_". If in the course of processing your program tries to open the ozone file, but does not find it, then it may set the
warning message

PATHFINDER_W_OZONE_FILE_MISSING.

The Toolkit then writes the string "Ozone file not found" to the Status log file. (See section 2.1.3, "Log files", for explanation of different log files.) You
might want the response you take to be written to a log file, using a pre- defined message; this can be done using the action definition. If your lower
level module returned PATHFINDER_W_OZONE_FILE_MISSING, then you can call Toolkit function PGS_SMF_GetActionByCode with this
mnemonic as input, and get back the string "Alternate file used"”. You could then use the PGS_SMF_GenerateStatusReport function to write this string
to the Report log file. This string could be just as easily written to the Status Log file by using the PGS_SMF_SetDynamicMsg tool.

Note that it is up to the user to specify the alternate action, such as opening the alternate file. The Toolkit takes no action itself. That is, the
accessing and writing of the action message and the actual action taken are completely independent of each other.

Action labels must not be used as stand-alone messages, i.e., they must never appear explicitly in your code. They can only be tacked on to other
messages as in the above example.

Usage of this function is optional.
2.1.2.6 Running the smfcompile utility

Now that preparation of your status message text file is complete, you need to generate files that your program can use -- it does not use the status
message text file directly. Do this by executing the smfcompile utility.

i) For use in C, the procedure is to run from the Unix command line

$PGSBI N/ snfconmpile -f AVHRR 99.t -r -i

This creates two files. $PGSINC/PGS_PATHFINDER_99.h is the C include file, and $PGSMSG/PGS_99 is the runtime ASCIl message file.
i) In FORTRAN 77 and FORTRAN 90, run from the Unix command line

$PGSBI N/ snfcompile -f AVHRR 99.t -f77

This creates two files. $PGSINC/PGS_PATHFINDER_99.f is the FORTRAN include file, and $PGSMSG/PGS_99 is the runtime ASCII
message file.

iii) In Ada, run from the Unix command line

$PGSBI N snf conpil e -f AVHRR 99.t -ada

This creates two files. $PGSINC/PGS_PATHFINDER_99.ada is the Ada package specification file, and $PGSMSG/PGS_99 is the runtime
ASCIl message file.

You should never modify either one of the two files created by smfcompile. The status message text file AVHRR_99.t is the only file you should ever
edit.

The runtime ASCII message file is independent of language, while the include or package specification file is language dependent.

Once you have constructed your status message text file, you can modify it. If you only modify the text of the messages, and not the mnemonic labels,
then you do not need to recompile your code; you only need to rerun smfcompile. This is because the include files (PGS_PATHFINDER:.h, .f. or .ada)
do not contain the text of the message, only the mnemonic and its internal code. If you do add or change mnemonic labels, then you will need to
recompile your code, after rerunning smfcompile.

The source code for the smfcompile utility is $PGSSRC/SMF/PGS_SMF_Comp.c .

2.1.3 Log files

Before we get into how to use the messages in your code, an explanation of log files is in order. There are 3 log files generated by the Toolkit: the
Status log file, the User log file, and the Report log file. All of these files are opened automatically the first time they are needed. They are identified
respectively as LogStatus, LogUser, and LogReport in the default Process Control file $PGS_PC_INFO_FILE ($PGSRUN/PCF.v5), as explained in
the Process Control section below. The Toolkit does not delete existing log files, but instead appends new information to them.

In order to use Toolkit log files at the SCF, you must use either PGS_PC_Shell.sh or PGS_PC_InitCom to initialize the Toolkit.
(This is done by the system at the DAAC.)

2.1.3.1 Status log file

The Status log file is automatically updated every time either your code or the Toolkit code calls one of the Toolkit functions PGS_SMF_Set*Msg.
Thus this file captures all error and status information concerning a program.

Here we explain in detail what you see in the log file, using an example.

11: PGS_PC_Get PCSDat aGet | ndex() : PGSPC_W NO_DATA PRESENT: 76807
The data requested is not in the line found.

Each entry consists of two lines, followed by a blank line. This example is a warning message generated by a Toolkit function. The first line contains
configuration and other information.

11: PGS_PC_Get PCSDat aGet | ndex() : PGSPC_W NO _DATA PRESENT: 76807

The first number (1) is the Production Run ID; the second (1) is the Software (version) ID. These parameters are obtained by the Toolkit from the
process control file $PGS_PC_INFO_FILE, as explained in the Process Control section below.

11: PGS_PC_Get PCSDat aGet | ndex() : PGSPC_W NO_DATA PRESENT: 76807

The next entry is the name of the function that set the message, through use of one of the Toolkit functions PGS_SMF_Set*Msg.

11: PGS_PC_Get PCSDat aGet | ndex() : PGSPC_W NO _DATA PRESENT: 76807

The next entry is the mnemonic label of the message.

11: PGS_PC_Get PCSDat aGet | ndex() : PGSPC_W NO_DATA_PRESENT: 76807
The final entry on this line is the SMF error code, which is used internally by the Toolkit to identify the
error or status.

The data requested is not in the line found.

The second line is the text of the message. For your messages, this is the message string that you typed into the status message text file AVHRR_99.
t, as explained above.

2.1.3.2 User log file

The User log file is automatically updated every time your code calls one of the Toolkit functions PGS_SMF_Set*Msg, and the message level is of
type "_U_"or"_N_". Thus this file consists of the subset of status messages that are of particular interest to you. (No Toolkit functions use messages
of these two levels.)

11: () : PATHFI NDER_N_PROCESSI NG_DONE: 813585
SUCCESS: AVHRR processing conplete at Mon Sep 19 17:37:47 1994

Since this message is of level "_N_", it appears in the User log file (and also the Status log file).
2.1.3.3 Report log file

The Report log file is updated each time you make a call to Toolkit function PGS_SMF_GenerateStatusReport. This function takes as input any
string, and simply writes it to this file. The messages you generated in AVHRR_99.t are not necessarily used. Thus this file is a way for you to send
arbitrary information to a log file. No Toolkit functions call this function, so you are in complete control of what gets written to the Report log file.

2.1.3.4 Where the log files go

The Toolkit writes the log files to directory $PGSHOME/runtime. You can get these files sent to a remote machine through use of either
PGS_PC_Shell.sh or PGS_PC_InitCom and PGS_PC_TermCom for more information regarding the sending of files).

2.1.3.5Log files are not deleted by Toolkit

The Toolkit writes to log files in "append" mode. This means that the log files will remain until you delete them. The log files are designed this way in
order to accept input from several executables from a single PGE. When testing at the SCF, you might want to manually delete these files
occasionally to save disk space. Alternatively you could delete them in your test script before each run. In the production system, the SDPS will delete
the log files between successive executions of a PGE.

2.1.4 Using error/status messages in your code

This section provides pointers to the major functions which you need to use to implement error/status messaging in your code. Only a brief summary
is given in this section; the explanations of the individual Toolkit functions, along with detailed examples of usage, appear in the Tool Descriptions
section.

2.1.4.1 Writing error/status messages to log files

The simplest thing to do is to save an error message, once your code detects an error. This is done by calling one of the functions
PGS_SMF_Set*Msg. The Toolkit automatically writes to the log file the message string corresponding to the mnemonic label which you supply as
input. The message is saved in memory to the internal status message buffer for future use. There are 3 tools that perform this function:

Tool PGS_SMF_SetStaticMsg does this for a pre-defined message.

Tool PGS_SMF_SetDynamicMsg does this for dynamic data such as the value of variables at runtime, when used in conjunction with another tool
(See section 2.1.4.2 for information on message retrieval tools).

Tool PGS_SMF_SetUNIXMsg does this for error codes returned from Unix system calls.

Since the Toolkit writes these messages to the Status log file automatically, this is all you need to do, if this is all you want.

If you want to write an arbitrary string to a log file at runtime, without benefit of your previously constructed error/status messages, use

tool PGS_SMF_GenerateStatusReport . It writes to the Report log file. One use you could make of this method is to write really important messages

such as unexpected errors to the Report log file. Such errors are written to the Status log file, but may be hard to separate from the many Toolkit
messages in that file. Since you control everything that is written to the Report log file, this will assure that the message gets your attention.

In order for all of the above functions to work, an entry for each log file must appear in the Process Control file $PGS_PC_INFO_FILE. The default
version of this file $SPGSRUN/PCF.v5 contains these entries already, so if you use this file that is already done for you.

2.1.4.2 Retrieving messages in your code
If for some reason you wish to retrieve the message inside your program, use the PGS_SMF_Get* functions.

PGS_SMF_GetMsg retrieves the message currently in the internal status message buffer, as set previously by a PGS_SMF_Set*Msg function. This
message has already been automatically written to the Status log file by the time you do this, so it is not really necessary to ever call this function.

PGS_SMF_GetMsgByCode retrieves a message string given its mnemonic label. It is useful for constructing dynamic messages, as shown in the
examples for PGS_SMF_SetDynamicMsg in the Tool Descriptions section.

You can also get the Action part of a given mnemonic label, by calling function PGS_SMF_GetActionByCode . This may be useful if you want to write
the action message to the Report log file.

2.1.4.3 Returning error/status codes from your lower-level modules

You may wish to use error/status messages as the return value of your own modules. The advantage to this is that you can then switch on either the
mnemonic label code itself, or on its status level, in the module that calls your lower-level function.

To do this, your module must be a function, and it must return a variable of type PGSt_SMF_status (C) or INTEGER (FORTRAN).

To switch on the status level of a returned value, use the PGS_SMF_Test*Level functions. These include PGS_SMF_TestStatusLevel, which returns
the status level given a mnemonic label, and the set of functions PGS_SMF_TestFatalLevel, PGS_SMF_TestErrorLevel,
PGS_SMF_TestWarningLevel, PGS_SMF_TestUserInfoLevel, PGS_SMF_TestNoticeLevel, PGS_SMF_TestMessageLevel, and
PGS_SMF_TestSuccessLevel, which all return PGS_TRUE or PGS_FALSE depending on whether the input mnemonic label is of that level or not.

2.1.4.4 Sending files to a remote machine

Toolkit function PGS_SMF_SendRuntimeData is used to mark files of your choice for sending to a remote machine.
The actual process of sending both these files and Toolkit log files to the remote machine is handled through use of either PGS_PC_Shell.sh, or PGS_
PC_InitCom and PGS_PC_TermCom.

These functions also automatically send email to a user on a remote machine.
Sending of files and email may be disabled by resetting the TransmitFlag (logical 10109) in the Process Control file.

Note that the feature of the Toolkit which allows file and e-mail transmission is indended for SCF use only. In the DAAC environment, these services
will be performed through the Data Server subscription mechanism.
2.1.4.5 Miscellaneous functions

PGS_SMF_SetArithmeticTrap accepts the name of your signal handling function, which the system will then use in the event of an arithmetic error,
thus avoiding a core dump. Due to unforeseen implementation difficulties, this tools was never officially released. For details on the problems
encountered, please read the signal handling investigation summary.

PGS_SMF_GetinstrName returns the name of the instrument, given an error/status mnemonic label. PGS_SMF_CreateMsgTag returns a string
containing configuration information, for use in stamping your own messages.

2.1.5 How the Toolkit itself uses error/status messages

The Toolkit itself makes extensive use of PGS_SMF_* functions for error checking purposes. Much effort has gone into assuring that the maximum
number of possible errors will be trapped, without sacrificing the speed and efficiency of the Toolkit code.

Nearly all Toolkit functions are of type PGSt_SMF_status in C, or INTEGER in FORTRAN, which means that they return a status or error value that
may be checked and acted on using PGS_SMF_* functions.

Toolkit runtime ASCIl message files have filenames of the form $PGSMSG/PGS_?, where ? = 1 to 13. They are derived from status message text
files with filenames of the form $PGSMSG/PGS_grp_?.t, where grp = Toolkit group name (SMF, PC, 10, ...) and ? = 1 to 13. The corresponding
include files have filenames of the form $PGSINC/PGS_grp_7?.h (C), $PGSINC/PGS_grp_7?.f (FORTRAN), and $PGSINC/PGS_grp_?.ada (Ada).

The Toolkit bases no action on the severity of error levels; that task is left to the science software. In particular, the Toolkit never returns a fatal error,
nor exits a program. In general, returned values from Toolkit functions are either of status levels"_S "," W_", or"_E_". The only time the Toolkit itself
acts on the status level of a message is when it sends user-generated messages of status level "_N_" or "_U_" to the User log file, as explained in
section 2.1.3, Log files.

Switching on the level of error is the province of the PGS_SMF_Test*Level set of tools. These tools are for use in the science software.

Since a message is written to the Status log file every time a PGS_SMF_Set*Msg function is called, many of these messages will be generated by
Toolkit functions, in the event of warnings or errors. If a low-level Toolkit function detects an error or warning, it will write a message to the Status log
file, then return the appropriate message to its calling function. That function also will write to the log file, if it is unable to handle the error, and return
an appropriate error or warning message to its calling function. So a single error or warning can result in several messages in the log file; this enables
traceability of the problem. The Status log file is in fact the only source of traceability for Toolkit errors.

There is a special case where warning messages are generated, when in fact there is no anomaly in processing. See the entry
for PGS_IO_Gen_Open.

This concludes the "Overview" section of the error/status messaging tools.

2.2.1 PGS_SMF_CreateMsgTag

Short explanation of what it's for: Returns a string containing configuration information, for stamping such things as entries in your Report log file.
Currently, configuration consists of Science Software Configuration ID and Production Run ID.

https://newsroom.gsfc.nasa.gov/sdptoolkit/primer/smf_SetDynamicMsg.html

This function is in file: $PGSSRC/SMF/PGS_SMF.c
Examples:

For the examples, arbitrarily let the Science Software Configuration ID be "V3.0" and the Production Run ID be "SCF22" in the Process Control file
(see Notes section).

C example:

#i ncl ude <PGS_SMF. h>

char systenilag][PGSd_SMF_TAG LENGTH _MAX] ;

PGSt _SMF_st at us returnStatus;

/*

Begi n exanpl e

*/

returnStatus = PGS_SMF_Creat eMsgTag(syst enirag) ;
/-k

The resultant value of systenifag is "V3.0SCF22"
*/

FORTRAN example:

I MPLI CI' T NONE

I NCLUDE ' PGS_SMF. f'

I NTEGER pgs_snf _creat ensgt ag
CHARACTER* 60 systent ag

I NTEGER r et ur nst at us

C
C Begi n exanpl e
Cc
returnstatus = pgs_snf_creat ensgt ag(syst ent ag)
C

C The resultant value of systentag is "V3.0SCF22"
Notes:

Configuration information is read from the SYSTEM RUNTIME PARAMETERS section of the Process Control file $PGS_PC_INFO_FILE (see
Process Control tool section), so this file must have been prepared first, and its environment variable set.

DAAC and hardware indentification are being considered as additions to the configuration data, for future deliveries of the Toolkit.

2.2.2 PGS_SMF_GenerateStatusReport

Short explanation of what it's for: Writes an arbitrary string to the Report log file. You may use this function as an alternative to preparing Toolkit
SMF style error/status messages.

This function is in file: $PGSSRC/SMF/PGS_SMF.c

Examples:

Examples that follow show how to write an error message with configuration information to the Report log file. Example given is an error condition
returned from Toolkit function PGS_IO_Gen_Open. Although this error message is automatically written to the Status log file by the Toolkit, you might

want to write it to the User log file also, in order to more easily identify it as an important message.

Variable "systemTag" has been previously set to value "V3.0SCF22" (see PGS_SMF_CreateMsgTag).

C example:

#i ncl ude <stdio. h>

#i ncl ude <PGS_SMF. h>

#i ncl ude <PGS_1 O h>

#defi ne GOLDEN_BI NARY 401

PGSt _| O Gen_Fi |l eHandl e *processCol den;
char nessage[1024] ;

char systenirag[PGSd_SMF_TAG_LENGTH_MAX] ;
PGSt _SMF_st at us returnStat us;

/*

Begi n exanpl e

*/

/*
Try to open a file
*/
returnStatus = PGS_I O _Gen_Open(GOLDEN_BI NARY,
PGSd_I| O Gen_Read, &processGol den, 1);
/*
Test whether status level is "_E " or worse
*/
if(PGS_SMF_Test StatusLevel (returnStatus) >= PGS_SMF_NMASK_LEV_E)
/*
If error, prepare nmsg, wite to Report log file
*/

sprintf(message, "% : Error opening golden binary file\n",
systenfTag);
returnStatus = PGS_SM-_Gener at eSt at usReport (message) ;
/*
The string "V3.0SCF22 : FError opening golden binary file"
is witten to the Report log file
*/

FORTRAN example:

I MPLICI' T NONE

I NCLUDE ' PGS_SMF. f'

I NCLUDE ' PGS_PC. f'

I NCLUDE ' PGS_PC 9. f'

I NCLUDE ' PGS_I O f'

I NCLUDE ' PGS_I O 1. f'

I NTEGER pgs_i o_gen_openf

I NTEGER pgs_snf _t est st at usl evel
I NTEGER pgs_snf _gener at est at usreport
I NTEGER GOLDEN_BI NARY
PARAMETER (GOLDEN_BI NARY=401)

I NTEGER pr ocessgol den
CHARACTER* 1024 nessage
CHARACTER* 60 systent ag

I NTEGER r et ur nst at us

C
C Begi n exanpl e
Cc
C Try to open a file
returnstatus = pgs_i o_gen_openf (GOLDEN_BI NARY,
PGSd_I O_Gen_RSeqUunf, 0, processgol den, 1)
C

C Test whether status level is " _E " or worse

IF (pgs_snf_teststatuslevel (returnstatus) .GE
PGS_SMF_MASK_LEV_E) THEN

Cc

CIf error, prepare nsg, wite to Report log file
nmessage = systentag // 'Error opening gol den binary file'
returnstatus =

pgs_snf _gener at est at usr eport (message)

C
C The string "V3.0SCF22 : Error opening golden binary file"
C is witten to the Report log file
C
END | F

Notes:

Message passed to this function may be of arbitrary length.

Report log file name is read internally by Toolkit functions from the SUPPORT OUTPUT section of the Process Control file $PGS_PC_INFO_FILE
(see the Process Control tool section), the first time PGS_SMF_GenerateStatusReport is called. This file must have been prepared first, and its

environment variable set. Normally you would not change this entry from the Process Control file template supplied with the Toolkit (SPGSRUN/PCF.
v5).

https://newsroom.gsfc.nasa.gov/sdptoolkit/primer/pc_overview.html

The golden binary file of the example must have an entry in the Process Control file, i.e., integer 401 must be associated with a reference (physical
filename) in that file.

Log files may be sent to a remote machine through use of either PGS_PC_Shell.sh, or PGS_PC_InitCom and PGS_PC_TermCom.
2.2.3 PGS_SMF_GetActionByCode

Short explanation of what it's for: Retrieves action string portion of an error/status action definition, given its mnemonic label code. You might use
this to write the action string explicitly to the Report log file, for example.

This function is in file: $PGSSRC/SMF/PGS_SMF.c
Examples:

The examples assume that the following entries exist in the status message text file AVHRR_99.t :

PATHFI NDER_A_ALT_FI LE_USED Alternate file used
PATHFI NDER_W OZONE_FI LE_M SSI NG Ozone file not found
:: PATHFI NDER_A_ALT_FI LE_USED

C example:

#i ncl ude <PGS_SMF. h>

char actionString[PGSd_SM-_MAX_ACT_SI ZE] ;

PGSt _SMF_st at us returnStat us;

/*

Begi n exanpl e

*/

returnStatus = Your Lower Level Modul e(argl, arg2, ...
if(returnStatus == PATHFI NDER_ W QZONE_FI LE_M SSI NG

returnStatus = PGS_SMF_GCet Act i onByCode(
PATHFI NDER_W OZONE_FI LE_M SSI NG, actionString);

/*

actionString now contains the string "Alternate file used"
*/

returnStatus = PGS_SMF_GCener at eSt at usReport (actionString);
/*

The string "Alternate file used" is witten to the

Report log file
*/

FORTRAN example:

I MPLI CI' T NONE

I NCLUDE ' PGS_SMF. f'

I NTEGER pgs_snf _get acti onbycode

I NTEGER your | ower | evel nodul e

I NTEGER pgs_snf _gener at est at usr eport
CHARACTER* 240 actionstring

I NTEGER r et ur nst at us

C
C Begi n exanpl e
C

returnstatus = yourl owerl evel nodul e(argl, arg2, ...

I F(returnstatus .EQ PATHFI NDER W OZONE_FI LE_M SSI NG THEN

returnstatus = pgs_snf_getacti onbycode(
PATHFI NDER_W OZONE_FI LE_M SSI NG actionstring)
C
C actionstring now contains the string 'Alternate file used'
C
returnstatus = pgs_snf_generatestatusreport(actionString)

C
C The string '"Alternate file used' is witten to the
C Report log file
C

END | F
Notes:

Messages must have been prepared in a status message text file first, and run through the smfcompile utility.

2.2.4 PGS_SMF_GetInstrName

Short explanation of what it's for: Returns the name of the instrument corresponding to a given mnemonic label code. This may be useful for
determining which instrument generated an error/status message, in the case of code integrated between more than one instrument.

This function is in file: $PGSSRC/SMF/PGS_SMF.c

Examples:

Examples assume the first four lines of the status message text file AVHRR_99.t appear as follows:

% NSTR = AVHRR

% ABEL = PATHFI NDER

YSEED = 99

PATHFI NDER_F_OPEN_BI NARY_FI LE FATAL_ERROR. .. opening binary file
C exanpl e:

#i ncl ude <PGS_SMr. h>
char instr[PGS_SMF_MAX_I NSTR_SI ZE] ;
PGSt _SMF_st at us returnStatus;
/*
Begi n exanpl e
*/
returnStatus = PGS_SMF_Get | nstr Nane(
PATHFI NDER_F_OPEN_BI NARY_FI LE, instr);
/*
instr now contains the string "AVHRR"
*/
FORTRAN exanpl e:

I MPLI CI' T NONE
I NCLUDE ' PGS_SMF. f'
I NTEGER pgs_snf _geti nstrnane
CHARACTER* 10 instr
I NTEGER r et ur nst at us
C
C Begi n exanpl e
C
returnstatus = pgs_snf_getinstrnanme(
PATHFI NDER_F_OPEN_BI NARY_FI LE, instr)

C

C instr now contains the string ' AVHRR
C

Not es:

Messages must have been prepared in a status message text file first, and run through the smfcompile utility.

2.2.5 PGS_SMF_GetMsg

Short explanation of what it's for: Retrieves the current error/status message from the message buffer. It is normally not necessary to call this
function in production processing.

This function is in file: $PGSSRC/SMF/PGS_SMF.c
Examples:

Examples show how to use this function to print to the screen during development. Note that the recommended error handling for production is very
different; see PGS_SMF_SetStaticMsg.

The examples contain two levels: (1) your main module, and (2) your lower level module, which attempts to open a file using PGS_IO_Gen_Open (C)
or PGS_IO_Gen_OpenF (FORTRAN).

The following entry is assumed to appear in the status message text file AVHRR_99.t:

PATHFI NDER_F_OPEN_BI NARY FI LE FATAL_ERRCR .. opening binary file

The corresponding entry then must appear in the runtime ASCIlI message file PGS_99:

815107, PATHFI NDER_F_OPEN_BI NARY_FI LE, NULL, FATAL_ERROR. . . error openi ng
binary file
C exanpl e:

#i ncl ude <PGS_SMF. h>

#i ncl ude <PGS_1 O h>

#defi ne GOLDEN_BI NARY 401

PGSt _I O_Gen_Fi | eHandl e *processCol den;
PGSt _SMF_code code;

char mmenoni c[PGS_SMF_MAX_MNEMONI C_SI ZE] ;
char nessage[PGS_SMF_MAX_MSGBUF_SI ZE] ;
PGSt _SMF_st at us returnStat us;

/*

Begi n exanpl e

*/

/*
Call |owlevel nmodule, whose definition is given bel ow
*/
returnStatus = LowLevel Modul e(&processCol den);
if(returnStatus != PGS_S SUCCESS)
{
/*
Get error nessage frombuffer, print to screen
*/
PGS_SMF_Get Msg(&code, mmenpnic, nessage);
printf("LowLevel Modul e: %\ n", message);
/*
Val ues of the variables returned by PGS SMF_Get Msg are
code: 815107
mmenoni ¢: * PATHFI NDER_F_OPEN_BI NARY_FI LE"
message: "FATAL_ERRCR...opening binary file"
The string "LowLevel Modul e: FATAL_ERROR. ..opening binary file"
is printed to the screen.
*/
}
/*
End mai n nodul e
*/
/*
Low | evel nodule definition
*/
PGSt _SMF_st at us LowLevel Mbdul e(
PGSt _| O Gen_Fi |l eHandl e **processCol denPtr)

{
/*
Try to open a file
*/
returnStatus = PGS_I O _Gen_Open(GOLDEN_BI NARY,
PGSd_| O Gen_Read, processCol denPtr, 1);
/*

Test whether status level is "_E " or worse
*/
if(PGS_SMF_Test StatusLevel (returnStatus) >= PGS_SMF_NMASK_LEV_E)

PGS _SMF_Set Stati cMsg(PATHFI NDER F_OPEN BI NARY FILE, "");
r et ur n(PATHFI NDER_F_OPEN_BI NARY_FI LE) ;

}

return(PGS_S_SUCCESS) ;

)

End |l ow | evel nodule definition
*/

FORTRAN exanpl e:

I MPLI CI' T NONE
I NCLUDE ' PGS_SMF. f'

I NCLUDE ' PGS_PC. f
I NCLUDE ' PGS_PC 9. f'
I NCLUDE ' PGS I O f*

I NCLUDE ' PGS_I O 1. f'

I NTEGER | ow evel nodul e

I NTEGER pgs_snf _get nsg

| NTEGER GOLDEN_BI NARY
PARAMETER (GOLDEN_BI NARY=401)
| NTEGER pr ocessgol den

| NTEGER code

CHARACTER*32 mmenoni ¢
CHARACTER* 480 nessage

I NTEGER r et ur nst at us

C
C Begin exanple
C
C Call lowlevel nodule, whose definition is given bel ow
C

returnstatus = | ow evel nbdul e(processgol den)

IF(returnstatus != PGS_S_SUCCESS) THEN
C
C GCet error nmessage frombuffer, print to screen
C

call pgs_snf_getnsg(code, mmenonic, nmessage)
PRI NT *, 'LowLevel Module: ', nessage

C
C Values of the variables returned by PGS_SMF_Get Msg are
C code: 815107
C menoni c: ' PATHFI NDER_F_OPEN_BI NARY_FI LE'
C nessage: ' FATAL_ERROR...opening binary file'
C The string 'LowLevel Modul e: FATAL_ERRCR. ..opening binary file'
C is printed to the screen.
C

END | F
C
C End nai n nodul e
C
C Low |l evel nodule definition
C

I NTEGER FUNCTI ON LowLevel Mbdul e(processgol den)
| NTEGER pgs_i o_gen_openf

I NTEGER pgs_snf _t est st at usl evel

I NTEGER pr ocessgol den

C
C Try to open a file
C
returnstatus = pgs_i o_gen_openf (GOLDEN_BI NARY,
. PGSd_I| O Gen_RSeqUnf, 0, processgol den, 1)
C
C Test whether status level is "_E " or worse
C
IF (pgs_snf_teststatuslevel (returnstatus) .GE
. PGS_SMF_MASK_LEV_E) THEN
pgs_snf _setstaticnsg(PATHFI NDER_F_OPEN BI NARY_FILE, "')
RETURN(PATHFI NDER_F_OPEN_BI NARY_FI LE)
END | F
RETURN(PGS_S_SUCCESS) ;
END
C
C End low | evel nodul e definition
C
Not es:

Message to be retrieved must have been previously written to the message buffer by one of the PGS_SMF_Set*Msg functions, e.g., PGS_SMF_SetSt
aticMsg .

This function retrieves what is currently in the message buffer.

The reason it is normally not necessary to call this function in production processing is that any message in the message buffer is automatically written
to the Status log file internally by the Toolkit.

Messages must have been prepared in a status message text file first, and run through the smfcompile utility.

The golden binary file of the example must have an entry on the Process Control file, i.e., integer 401 must be associated with a reference (physical
filename) in that file.

In the example, note that the values returned by the PGS_SMF_GetMsg call are independent of the return value of the LowLevelModule function,
though they are associated with each other.

2.2.6 PGS_SMF_GetMsgByCode

Short explanation of what it's for: Returns the message definition string corresponding to a given mnemonic label code. Primary use is to enable
creation of dynamic messages.

This function is in file: $PGSSRC/SMF/PGS_SMF.c
Examples:

This example first shows how to retrieve a message definition string for a given mnemonic label code using PGS_SMF_GetMsgByCode, then shows
how the result can be used to create a dynamic message.

The following entry is assumed to appear in the status message text file, AVHRR_99.t:

C example:

PATHFI NDER_F_OPEN_ANC FI LE FATAL_ERRCR .. %

FORTRAN example:

PATHFI NDER_F_OPEN_ANC FI LE (" FATAL_ERROR...', A)
C exanpl e:

#i ncl ude <PGS_1 O h>
#i ncl ude <PGS_SMF. h>
#i ncl ude <PGS_AVHRR 99. h>

#defi ne GOLDEN_BI NARY 401
#def i ne SUCCESS 0 /* GSFC AVHRR/ Pat hfi nder error handling */
#define FATAL_ERROR -1 /* GSFC AVHRR/ Pat hfi nder error handling */
char descrip[80];
char nessage[PGS_SMF_MAX_MSGBUF_SI ZE] ;
char buf [PGS_SMF_MAX_MSGBUF_SI ZE] ;
PGSt _SMF_st atus returnStatus;
/*
Begi n exanpl e
*/
/*
Try to open a file
*/
strcpy(descrip, "opening golden binary file");
if (PGS_I O Gen_Open(GOLDEN_BI NARY, PGSd_| O Gen_Read,
processCol denPtr, 1)
= PGS_S SUCCESS) goto EXCEPTI ON;

return (SUCCESS);
/*

Excepti on bl ock
*/
EXCEPTI ON:
/*

First retrieve the static nessage string into 'nessage'
*/

PGS_SMF_Get MsgByCode(PATHFI NDER_F_OPEN_ANC_FI LE, nessage);
/*

nmessage now contains the string "FATAL_ERROR. .. %"
*/

sprintf(buf, message, descrip);
/*

buf now contains the string

"FATAL_ERRCR. . . openi ng gol den binary file"

*/
PGS_SMF_Set Dynani cMsg(PATHFI NDER_F_OPEN_ANC FILE, buf, "");
/*
Message buffer now contains the buf string, and it has been
automatically witten to the Status log file
*/

ret ur n(FATAL_ERROR) ;

}
FORTRAN exanpl e:

include 'PGS_I O f'
include ' PGS_SMF. f*'
include ' PGS_AVHRR 99. f'

character*80 descrip
charact er*240 nessage
charact er *240 buf
character*20 func_nane

nt eger gol den_bi nary

nt eger success I GSFC AVHRR/ Pat hfi nder error handling
nteger fatal _error I GSFC AVHRR/ Pat hfi nder error handling
nt eger gol den_un

nt eger version

nt eger returnstatus

! Begin exanple

! Initialize variables

func_name = "avhrr_func()' ! name of this function
success = 0 ! success return val ue
fatal _error = -1 ! error return val ue

!

gol den_bi naray = 401 file logical IDin PCF

version =1

! Try to open a file

descrip = 'opening golden binary file'

returnstatus = pgs_i o_gen_openf(gol den_bi nary,
> pgsd_i o_gen_rseqfrm O,
> gol den_un, version)

if (returnstatus .ne. pgs_s_success) goto 999

avhrr_func = success
return

! Exception block
999 continue
! First retrieve the static nessage string into ' nessage'
pgs_snf _get negbycode(PATHFI NDER_F_OPEN_ANC FI LE, nessage)
! message now contains the string ' (' FATAL_ERROR .."', A)'
write(buf, ref=nessage) descrip

! buf now contains the string:
! " FATAL_ERROR. .. opening golden binary file

pgs_snf _set dynam cnsg(PATHFI NDER_F_OPEN_ANC_FI LE, buf, func_nane)

! Message buffer now contains the buf string, and it has been
! automatically witten to the Status log file

avhrr_func = fatal _error
return
Not es:

The golden binary file of the example must have an entry on the Process Control file, i.e., integer 401 must be associated with a reference (physical
filename) in that file.

Messages must have been prepared in a status message text file first, and run through the smfcompile utility.

2.2.7 PGS_SMF_SendRuntimeData

Short explanation of what it's for: Mark output files for sending to a designated machine. Email is also sent to designated recipient(s).
This function is in file: $PGSSRC/SMF/PGS_SMF_SendRuntimeData.c

Examples:

The examples assume the following exists in the Process Control File (PCF):

https://newsroom.gsfc.nasa.gov/sdptoolkit/primer/io1.html#OpenF

? PRODUCT | NPUT FI LES
#

201| 87002002709.
399| test 10. hdf| |
399| test 23. hdf| |
399| test 06. hdf| |
C exanpl e:

n
|
|
|

09 gac||||gac_attributes|1
[l
[l
[

#i ncl ude <PGS_SMF. h>

#define GAC_FILE 201
#define HDF_I NFI LE 399

PGSt _i nt eger sendFil e[3];
PGSt _i nt eger version[3];

PGSt _i nt eger nunFil es;

PGSt _SMF_st at us returnStat us;
/*

Begi n exanpl e

*/

sendFile[0] = C_FI LE;
version[0] = 1;

sendFi | e[1] = HDF_I NFI LE;
version[1] = 1;

sendFi | e[2] = HDF_I NFI LE;
version[2] = 2;

nunFiles = 3;

returnStatus = PGS_SMF_SendRunt i neDat a(
nunfiles, sendFile, version);

/* Files 87002002709. no9_gac, test10.hdf, and test23. hdf
in default directory $PGS_PRODUCT_| NPUT are now marked for
sending to a renote nmachine. */

FORTRAN exanpl e:

I MPLICI' T NONE

I NCLUDE ' PGS_SMF. f'

I NTEGER pgs_snf _sendrunti nedat a
I NTEGER GAC FI LE
PARAVETER (GAC_FI LE=201)

I NTEGER HDF_I| NFI LE
PARAMETER (HDF_| NFI LE=399)
I NTEGER sendfil e(3)

I NTEGER ver si on(3)

I NTEGER nunfil es

I NTEGER r et ur nst at us

C Begi n exanpl e
C

sendfile(1l) = GAC FILE
version(l) =1

sendfile(2) = HDF_I NFILE
version(2) =1

sendfile(3) = HDF_I NFILE
version(3) = 2

nunfiles = 2
returnstatus = pgs_snf_sendrunti medat a(
nunfiles, sendfile, version)

C Files 87002002709. no9_gac, test10.hdf, and test23. hdf

Cin default directory $PGS_PRODUCT_I NPUT are now marked for
C sending to a renote nmachine.

Not es:

This function should only be called once in your program. Only the last call of this function is recognized by the Toolkit. This is to minimize overhead in
file transfers.

The mechanism for doing the file transfers is currently Unix function ftp. This may change in the future, e.g., to use DCE or its equivalent, but the
calling sequence will not change. In the production environment, files will be placed on an intermediate machine; then you can retrieve them at your
convenience.

In the examples, of the 3 files with logical ID 399, files test10.hdf and test23.hdf are sent because they are listed #1 and #2 in order in the PCF.
For more information about version numbers vs. sequence numbers (sequence numbers are the ones listed in the last field of the PCF entries), see
"sec. 4.1.2.2, Constructing your Process Control file, PRODUCT INPUT, Field 7, Sequence number".

In order for this function to work at the SCF, you must be using either PGS_PC_Shell.sh or Edit line 10106 to change "sandcrab" to the machine to
which you want the files sent. In the production environment, this will be an intermediate machine, from which you will later retrieve the file.

Edit line 10107 to change "/usr/kwan/test/PC/data" to the fully qualified directory name to which you want the files written on that machine. The
directory must exist, and have at least Unix user permission "w".

Edit line 10108 to change "kwan@eos.hitc.com" to the email address at which you want email notification that the files have been sent.

In your home directory $HOME on the machine on which you are executing your code at the SCF, the file ".netrc" must exist, with Unix permissions "-
W------- ", This file must contain the line

machine sandcrab login kwan password kwan_password
where "sandcrab” is the machine of line 10106, "kwan" is a valid user of that machine, and "kwan_password" is his/her password.

Due to local security policy, the use of this mechanism of using '.netrc' files may be changed. The production environment may use a more secure
mechanism.

2.2.8 PGS_SMF_SetArithmeticTrap

Short explanation of what it's for: Catching arithmetic errors in your program, in order to avoid core dumps.
Notes:

This tool was intended to be delivered with TK4. However, implementation has been problematic. At this writing delivery of the tool is uncertain. For
details on the problems encountered, please read the signal handling investigation summary.

2.2.9 PGS_SMF_SetDynamicMsg

Short explanation of what it's for: Saves a runtime-defined error/status message to the message buffer. Every time this function is called, it writes
an entry to the Status log file.

This function is in file: $PGSSRC/SMF/PGS_SMF.c
Examples:

There are at least two different ways to use this function. Example 1 shows C programmers how to construct dynamic messages through use of
PGS_SMF_GetMsgByCode; Example 2 shows how to do it directly, in both C and FORTRAN.

Example 1: Using PGS_SMF_GetMsgByCode

This example first shows how to retrieve a message definition string for a given mnemonic label code using PGS_SMF_GetMsgByCode, then shows
how the result can be used to create a dynamic message.

The following entry is assumed to appear in the status message text file , AVHRR_99.t:

PATHFI NDER F_OPEN ANC FILE FATAL_ERROR .. %

The corresponding entry then must appear in the runtime ASCIlI message file PGS_99:

815104, PATHFI NDER_F_COPEN_ANC _FI LE, NULL, FATAL_ERROR. . . %

C example 1:

https://newsroom.gsfc.nasa.gov/sdptoolkit/primer/signal_issue.html

#i ncl ude <PGS_I O h>
#i ncl ude <PGS_SMF. h>
#def i ne GOLDEN_BI NARY 401
#def i ne SUCCESS 0 /* GSFC AVHRR/ Pat hfi nder error handling */
#define FATAL_ERROR -1 /* GSFC AVHRR/ Pat hfi nder error handling */
char descrip[80];
char nessage[PGS_SMF_MAX_MSGBUF_SI ZE] ;
char buf [PGS_SMF_MAX_MSGBUF_SI ZE] ;
PGSt _SMF_st atus returnStatus;
/*
Begi n exanpl e
*/
/*
Try to open a file
*/
strcpy(descrip, "opening golden binary file");
if (PGS_lI O Gen_Open(GOLDEN BI NARY, PGSd_I O Gen_Read,
processCol denPtr, 1)
= PGS_S_SUCCESS) goto EXCEPTI ON;

return (SUCCESS);
/*
Exception bl ock

*/
EXCEPTI ON:
/*

First retrieve the static nessage string into 'nessage'
*/

returnStatus = PGS_SM_Get MsgByCode(

PATHFI NDER_F_OPEN_ANC FI LE, message);

/*

nessage now contains the string "FATAL_ERROR. .. %"
*/

sprintf(buf, message, descrip);
/*

buf now contains the string

"FATAL_ERROR. . . openi ng gol den binary file"

*/

returnStatus = PGS_SMF_Set Dynam cMsg(

PATHFI NDER_F_OPEN_ANC _FI LE, buf, "");

/*

Message buffer now contains the buf string, and the follow ng

entry appears in the Status log file:
11: : PATHFI NDER_F_OPEN_ANC FI LE: 815104
FATAL_ERRCR. . . openi ng gol den binary file
*/

ret ur n(FATAL_ERROR) ;

FORTRAN example 1:

Work is in progress on a FORTRAN function that is essentially a wrapper on C function "sprintf", which will enable the creation of dynamic messages
in FORTRAN, similar to that given in the C example above. This method cannot be applied in FORTRAN until the "sprintf" wrapper is available. For
now, FORTRAN users can only use the method of Example 2 below to construct dynamic messages.

Example 2: Direct Method

This example shows how to construct dynamic messages directly.

C example 2:

#i ncl ude <PGS_I O h>
#i ncl ude <PGS_SMF. h>
#def i ne GOLDEN_BI NARY 401
#def i ne SUCCESS 0 /* GSFC AVHRR/ Pat hfi nder error handling */
#define FATAL_ERROR -1 /* GSFC AVHRR/ Pat hfi nder error handling */
char descrip[80];
char nessage[PGS_SMF_MAX_MSGBUF_SI ZE] ;
char buf [PGS_SMF_MAX_MSGBUF_SI ZE] ;
PGSt _SMF_st atus returnStatus;
/*
Begi n exanpl e
*/
/*
Try to open a file
*/
strcpy(descrip, "opening golden binary file");
if (PGS_lI O Gen_Open(GOLDEN BI NARY, PGSd_I O Gen_Read,
processCol denPtr, 1)
= PGS_S_SUCCESS) goto EXCEPTI ON;

return (SUCCESS);
/*
Exception bl ock

*/
EXCEPTI ON:
/*

Construct error string manually
*/

strcpy(buf, "FATAL_ERROR...");

strcat (buf, descrip);
/*

buf now contains the string

"FATAL_ERROR. . . openi ng gol den binary file"

*/

returnStatus = PGS_SMF_Set Dynani cMsg(

PATHFI NDER_F_OPEN_ANC FI LE, buf, "");

/*

Message buffer now contains the buf string, and the follow ng
entry appears in the Status log file:

11: : PATHFI NDER_F_OPEN_ANC FI LE: 815104

FATAL_ERROR. . . openi ng gol den binary file

*/

}

FORTRAN example 2:

ret urn(FATAL_ERROR) ;

I MPLI CI' T NONE
I NCLUDE ' PGS_SMF. '
I NCLUDE ' PGS_PC. f'
I NCLUDE ' PGS_PC 9. f'
I NCLUDE ' PGS_I O '
I NCLUDE ' PGS_I O 1. f'
I NTEGER pgs_i o_gen_openf
I NTEGER pgs_snf _set dynami cnsg
I NTEGER GOLDEN_BI NARY
PARAMETER (GOLDEN_BI NARY=401)
| NTEGER pr ocessgol den
CHARACTER* 32 mmenoni ¢
CHARACTER* 480 buf
CHARACTER* 480 nessage
I NTEGER r et ur nst at us

C

C Begi n exanpl e

C

C Try to open a file

C
returnstatus = pgs_i o_gen_openf (GOLDEN_BI NARY,
. PGSd_I O_Gen_RSequnf, 0, processgol den, 1)
IF (returnstatus .NE. PGS_S SUCCESS) GO TO 999

RETURN (SUCCESS)
C
C Exception block
C
999 CONTI NUE

Construct error string manually
buf = 'FATAL_ERRCR...' // descrip

Cc
C
C
C
C buf now contains the string
C ' FATAL_ERROR. . . openi ng gol den binary file'
C
returnstatus = pgs_snf_setdynam cnsg(
PATHFI NDER_F_OPEN_ANC FI LE, buf, "')

Message buffer now contains the buf string, and the follow ng
entry appears in the Status log file:

11: : PATHFI NDER_F_OPEN_ANC FI LE: 815104

FATAL_ERROR. . . openi ng gol den binary file

O00000

RETURN(FATAL_ERROR)
END

Notes:

The value of the second argument of PGS_SMF_SetDynamicMsg buf is what is stored in the message buffer. The only effect of the first argument (the
mnemonic label code) is that the mnemonic label code and string are written to the Status log file. The message that is permanently associated with
the mnemonic label for this PGE run, as defined in the runtime ASCIlI message file PATHFINDER_99, does not change.

Both this method of using PGS_SMF_SetDynamicMsg (Example 2), and tool PGS_SMF_GenerateStatusReport, write a user-defined string to a log
file. The differences between them are (1) the two methods write to different log files, (2) the log file entry from PGS_SMF_SetDynamicMsg contains
an extra line with mnemonic label string, code, etc., and (3) PGS_SMF_SetDynamicMsg saves its message to the message buffer, for optional later
retrieval.

Messages must have been prepared in a status message text file first, and run through the smfcompile utility.

2.2.10 PGS_SMF_SetStaticMsg

Short explanation of what it's for: Saves a pre-defined error/status message to the message buffer. This is the primary mechanism you use to
handle errors that have static messages associated with them. Every time this function is called, it writes an entry to the Status log file.

This function is in file: $PGSSRC/SMF/PGS_SMF.c
Examples:
The example attempts to open a file using PGS_IO_Gen_Open.

The following entry is assumed to appear in the status message text file AVHRR_99.t:

PATHFI NDER_F_OPEN BI NARY_FILE FATAL_ERROR ..opening binary file

The corresponding entry then must appear in the runtime ASCII message file PGS_99:

815107, PATHFI NDER_F_OPEN_BI NARY_FI LE, NULL, FATAL_ERROR. . . error openi ng
binary file

C example:

#include <PGS_SMF.h>

#i ncl ude <PGS_|1 O h>

#defi ne GOLDEN_BI NARY 401

PGSt _| O Gen_Fi | eHandl e *processCol den;
PGSt _SMF_st at us returnStatus;

/*

Begi n exanpl e

*/

/*
Try to open a file
*/
returnStatus = PGS_|I O Gen_Open(GOLDEN_BI NARY,
PGSd_I O _Gen_Read, &processCol den, 1);
if(returnStatus != PGS_S SUCCESS)

PGS_SMF_Set Stati cMsg(PATHFI NDER_F_OPEN_BI NARY_FI LE,
"Your Mbdul eNanmeHere");
/~k
The followi ng entry appears in the Status log file:
11: Your Modul eNaneHer e: PATHFI NDER_F_OPEN_BI NARY_FI LE: 815107
FATAL_ERRCR. . .error opening binary file
*/
return(PATHFI NDER_F_OPEN BI NARY_FI LE);

}
return(PGS_S SUCCESS);

FORTRAN example:

I MPLI CI' T NONE
I NCLUDE ' PGS_SMF. f'
I NCLUDE ' PGS_PC. f'
I NCLUDE ' PGS_PC 9. f'
I NCLUDE ' PGS_I O f'
I NCLUDE ' PGS_I O 1. f'
I NTEGER pgs_i o_gen_openf
I NTEGER pgs_snf _setstaticnsg
| NTEGER GOLDEN_BI NARY
PARAMETER (GOLDEN_BI NARY=401)
I NTEGER pr ocessgol den
I NTEGER r et ur nst at us
C
C Begi n exanpl e
C
C Try to open a file
C

returnstatus = pgs_i o_gen_openf (GOLDEN_BI NARY,
PGSd_I O_Gen_RSeqUnf, 0, processgol den, 1)
IF (returnstatus .NE. PGS_S SUCCESS) THEN
pgs_snf_setstati cmsg(PATHFI NDER_F_OPEN_BI NARY_FI LE,
' your nodul enanehere')
RETURN(PATHFI NDER_F_OPEN_BI NARY_FI LE)

C
C The following entry appears in the Status log file:
C 11: your nodul enaneher e: PATHFI NDER_F_OPEN_BI NARY_FI LE: 815107
C FATAL_ERROR. . .error opening binary file
C
END | F
RETURN(PGS_S_SUCCESS) ;
Notes:

Ordinarily, you never need to retrieve the message saved to the buffer by this function, since it is written to the Status log file. If you want to retrieve it,
e.g., for printing to the screen during SCF development, use PGS_SMF_GetMsg. For a detailed explanation of what is written to the Status log file,
see section 3.1.3, "Log files".

2.2.11 PGS_SMF_SetUNIXMsg

Short explanation of what it's for: Saves a Unix-defined error/status message to the message buffer. Every time this function is called, it writes an
entry to the Status log file.

This function is in file: $PGSSRC/SMF/PGS_SMF.c

Examples:

This hypothetical example shows how to trap the error if an unknown I/O error occurs while your program is using a native language I/O function to
read from a file.

C example:

#i ncl ude <PGS_SMF. h>

#def i ne GOODESX 5004

#defi ne GOODESY 2168

PGSt _I O_Gen_Fi | eHandl e *processCol den;
PGSt _SMF_st at us returnStat us;

int jc,ret;
short shortval s[GOODESX] ;
/*
Begi n exanpl e
*/
for (jc=0;jc<GOODESY;jc++)
/*
Read from a previously opened file
*/
ret =fread(shortval s, si zeof (short), GOODESX, pr ocessGol den) ;
/*
If error detected in "fread" or EOF, go to exception bl ock
*/
if ((ret!=CO0DESX) ||
(f eof (processGol den)!=0)]| |
(ferror(processCol den)! =0))
got o EXCEPTI ON,
}

ret ur n(PGS_S_SUCCESS) ;

/*

Exception bl ock

*/

EXCEPTI ON:

/*

Save Unix error string in buffer, wite to log file

Add string indicating error occurred while reading | and/sea fl ags
Return error code for processing in calling nodule

*/
returnStatus = PGS_SMF_Set UNI XMsg(errno,
" -- error reading | and/sea flags", "YourMdul eNanmeHere");
return(PGS_E_UN X);
/*

The followi ng entry appears in the Status log file:
11: Your Modul eNameHer e: PGS_E_UNI X: 1798

UNI X: errno=5, I/Oerror -- error reading |and/sea flags
("I/Oerror" is the Unix error string associated with
errno=5)

*/

FORTRAN example:

This example shows how to check for errors in obtaining the time of the system clock, i.e., the number of seconds elapsed since Jan. 1, 1970. (The
example used is different from the C example because of the considerations explained in the Notes section below.)

I MPLICI T NONE

I NCLUDE ' PGS_SMF. h'

I NTEGER pgs_snf _set uni xnsg
I NTEGER i tinme

I NTEGER i error

Begi n exanpl e

Cal | POSI X FORTRAN subroutine to get systemtine

O0000

CALL PXFTIME(itine, ierror)
IF(ierror .NE. 0) THEN

Save Unix error string in buffer, wite to log file

[eXeXe]

pgs_snf _setuni xnsg(ierror, '',
' Your Modul eNaneHere');

The following entry appears in the Status log file:
11: Your Modul eNaneHer e: PGS_E_UNI X: 1798
UNI X: errno=999, No systemtine
[Note that this errno is fabricated]

O00000

END I F

Notes:

FORTRAN users must have compiled their code with a FORTRAN POSIX compiler in order to use PGS_SMF_SetUNIXMessage; in addition,
this function only traps errors occurring through use of FORTRAN POSIX functions. This is because the ierror parameter is only returned by
FORTRAN POSIX functions. For reading and writing files, for example, this means that in order to use this tool, you must use the POSIX FORTRAN
functions PXFREAD and PXFWRITE, and not the ANSI FORTRAN functions READ and WRITE. Unfortunately these POSIX functions only are for
stream, or CHARACTER, I/O in FORTRAN, and hence are of limited use in the ECS environment; in addition, we are aware that few SCFs are likely
to have FORTRAN POSIX compilers at this point. We recommend that in practice you stick with your current FORTRAN error handling for I/O
functions. The fact that this function is of limited use to FORTRAN programmers is essentially a consequence of the fact that FORTRAN makes limited
use of system calls.

Further explanation of the Status log file entry of the example is in order.

11: Your Modul eNameHer e: PGS_M UNI X: 1798
UNI X: errno=5, I/Oerror -- error reading |and/sea flags

The first line of an error written by a call to PGS_SMF_SetUNIXMsg is always the same, except for that name of the module YourModuleNameHere
(assuming you provided this in the call to the function). The second line gives the Unix errno, as defined in the system include file errno.h (usually in
lusr/include or /usr/include/sys). The string "I/O error” is also from that system file. The example also shows how to add your own string, in this case
-- error reading land/sea flags", to the Unix system error string. The additional string is optional; set it to NULL (C) or " (FORTRAN) if it is not needed.

2.2.12 PGS_SMF_Test*Level

Short explanation of what it's for: To test the status level severity of a returned value of a Toolkit function or your own lower level module.

This function is in file: $PGSSRC/SMF/PGS_SMF.c

Special Note: This section covers a whole group of functions, all of whose names are of the form PGS_SMF_Test*Level. Here "*" represents either
Status, Fatal, Error, Warning, Message, UserInfo, or Success. For further explanation see the explanation of status level in section 3.1.2.3,
"Constructing the status message text file".

There are two sub-groups of PGS_SMF_Test*Level functions: one, PGS_SMF_TestStatusLevel, and two, all the rest. PGS_SMF_TestErrorLevel is
taken as a typical example of group two; the other functions all behave similarly.

Examples:
The first example is of the first sub-group; it shows how to branch if a Toolkit function returns an error of level "_E_"or"_F_".
The second example is of the second sub-group; it shows how to branch if a Toolkit function returns an error of level "_E_".

In both examples, the science software is interpreting a Toolkit error return code of level "_E_" to be a fatal error. (The Toolkit never returns an error
code of level "_F_".)

The following entry is assumed to appear in the status message text file AVHRR_99.t:

PATHFI NDER_F_OPEN BI NARY_FILE FATAL_ERROR ..opening binary file

Example 1: PGS_SMF_TestStatusLevel

This function takes as input a mnemonic label code, and returns one of the following values, corresponding to the status level of the mnemonic:

PGS_SMF_MASK_ L
PGS_SMF_MASK_L
PGS_SMF_MASK_L
PGS_SMF_MASK_L
PGS_SMF_MASK_L
PGS_SMF_MASK_LEV_
PGS_SMF_MASK_LEV_

'S
M
U
N
W
E
F

233232327

The values of these mnemonics (which are hexadecimals) increase from top to bottom in the above list. That is, e.g., PGS_SMF_MASK_LEV_F is
greater than PGS_SMF_MASK_LEV_E.

C example 1:

#i ncl ude <PGS_SMF. h>
#i ncl ude <PGS_1 O h>
#defi ne GOLDEN_BI NARY 401
PGSt _I O_Gen_Fi | eHandl e *processCol den;
PGSt _SMF_st at us returnStat us;
/*
Begi n exanpl e
*/
/*
Try to open a file
*/
returnStatus = PGS_| O _Gen_QOpen(GOLDEN BI NARY, PGSd_I| O Gen_Read,
&processGol den, 1);
/*
Test whether status level is "_E " or worse
*/
if(PGS_SMF_Test StatusLevel (returnStatus) >= PGS_SMF_NMASK_LEV_E)

PGS_SMF_Set St at i cMsg(PATHFI NDER_F_OPEN_BI NARY_FI LE,
" Your Mbdul eNarmeHere") ;

/*

The followi ng entry appears in the Status log file:
11: Your Modul eNanmeHer e: PATHFI NDER_F_OPEN_BI NARY_FI LE: 815107
FATAL_ERROR. ..error opening binary file
*/
}

FORTRAN example 1:

I MPLI CI' T NONE

I NCLUDE ' PGS_SMF. f'

I NCLUDE ' PGS_PC. f'

I NCLUDE ' PGS_PC 9. f'

I NCLUDE ' PGS_I O, f'

I NCLUDE ' PGS_I O 1. f'

| NTEGER pgs_i o_gen_openf

I NTEGER pgs_snf _t est st at usl evel
| NTEGER GOLDEN_BI NARY
PARAMETER (GOLDEN_BI NARY=401)
I NTEGER pr ocessgol den

I NTEGER r et ur nst at us

Cc

C Begi n exanpl e

C

C Try to open a file

returnstatus = pgs_i o_gen_openf (GOLDEN_BI NARY,
. PGSd_I O_Gen_RSequnf, 0, processgol den, 1)

[eXe)

Test whether status level is "_E" or worse ("_F_")

IF (pgs_snf_teststatuslevel (returnstatus) .GE
. PGS_SMF_MASK_LEV_E) THEN

(@]

pgs_snf _setstati cnmsg(PATHFI NDER_F_OPEN_BI NARY_FI LE,
' your nodul enanehere')

The followi ng entry appears in the Status log file:
11: your modul enaneher e: PATHFI NDER_F_OPEN_BI NARY_FI LE: 815107
FATAL_ERROR. . .error opening binary file

O0000

END I F

Example 2: PGS_SMF_TestErrorLevel

This example also be applies to the Fatal, Warning, Message, UserInfo, and Success functions of class PGS_SMF_Test*Level. These functions return
either PGS_TRUE or PGS_FALSE, depending on whether the mnemonic label error code is of the given status level or not. For example,
PGS_SMF_TestFatalLevel(PATHFINDER_F_OPEN_BINARY_FILE) returns PGS_TRUE, while the rest of the functions of this sub-group return
PGS_FALSE for this argument.

C example 2:

#i ncl ude <PGS_SMF. h>

#i ncl ude <PGS_1 O h>

#defi ne GOLDEN_BI NARY 401

PGSt _| O _Gen_Fi | eHandl e *processCol den;
PGSt _SMF_st atus returnStatus;

/*

Begi n exanpl e

*/

/*
Try to open a file
*/
returnStatus = PGS_|I O Gen_Open(GOLDEN_BI NARY,
PGSd_I O _Gen_Read, &processCol den, 1);
/*

Test whether status level is "_E"
*/
if(PGS_SMF_TestErrorLevel (returnStatus) == PGS_TRUE)

PGS_SMF_Set St at i cMsg(PATHFI NDER_F_OPEN_BI NARY_FI LE,
" Your Mbdul eNarreHer e") ;
/*
The followi ng entry appears in the Status log file:
11: Your Modul eNaneHer e: PATHFI NDER_F_OPEN_BI NARY_FI LE: 815107
FATAL_ERRCR. ..error opening binary file

*/

}

FORTRAN example 2:
I MPLI CI T NONE
I NCLUDE ' PGS_SMF. f'
I NCLUDE ' PGS_PC. f*
I NCLUDE ' PGS_PC 9. f'
I NCLUDE ' PGS_I O f'

I NCLUDE ' PGS_I O 1. f"'

I NTEGER pgs_i o_gen_openf

I NTEGER pgs_snf _setstaticnsg
| NTEGER GOLDEN_BI NARY
PARAVETER (GOLDEN_BI NARY=401)
I NTEGER pr ocessgol den

I NTEGER r et ur nst at us

C
C Begi n exanpl e
Cc
C Try to open a file
returnstatus = pgs_i o_gen_openf (GOLDEN_BI NARY,
PGSd_I O_Gen_RSeqUnf, 0, processgol den, 1)
C

C Test whether status level is " _E"
IF (pgs_snf_testerrorlevel (returnstatus) .EQ
PGS_TRUE) THEN

O

pgs_snf _setstati cnmsg(PATHFI NDER_F_OPEN_BI NARY_FI LE,
" your nodul enanehere')

The followi ng entry appears in the Status log file:
11: your nodul enaneher e: PATHFI NDER_F_OPEN_BI NARY_FI LE: 815107
FATAL_ERROR. ..error opening binary file

O0000

END I F
Notes:

Although the examples given are of Toolkit functions returning SMF error codes and then being tested, you can also use these functions to test your
own modules, providing they are set up to return SMF error codes.

Please note that the Toolkit never returns a message of level "_F_" (fatal). Therefore the two examples given are actually equivalent ways of doing the
same thing.

In reality, if your code detects a fatal error, you will want to branch use the exit() function (C) or STOP statement (FORTRAN). Codes to use for the
argument of this function are not yet defined.

3. Process Control (PC) Tools

3.1 Overview
3.1.1 Introduction

The next highest level of the Toolkit above the SMF tools includes the Process Control (PC) tools. Their purpose is to provide a direct interface
between the science software and the rest of the SDPS, including accessing file attributes (data about files), physical filenames (for use by HDF
functions), and other functions. These tools are used internally by many Toolkit functions, such as Generic 1/O, Ancillary Access, and other tools.

There are two sets of PC tools: the Command tools, which are callable from Unix shell scripts, and the API tools, callable from C and Fortran. Much
of the functionality is duplicated between these two groups; many of the Command tools are simple wrappers on the C code of the API tools, with
some exceptions.

For more information about the Command tools see below.

Note: Most of the information in this overview applies to both Command tools and API tools; in particular, both read from the same Process Control
File.

The Process Control File (PCF) is central to the PC tools. At the SCF, you construct a PCF using a text editor, one for each PGE. These PCFs are
part of the delivery of your software to the DAAC. Your software will access files by logical identifiers (essentially integers, defined by mnemonics).
The PCF maps these logical identifiers to physical references (currently physical file names and directories). Each logical identifier corresponds to one
or more physical references, or versions. At the SCF, you can use any physical reference you like. In the production environment, the physical
reference is supplied by the DAAC. Details are given below.

In this overview section, we walk you through the procedure of constructing your own Process Control File step-by-step, then explain the workings of
the pccheck utility, which checks the format of this file. The PCF is read by most of the PC tools (directly or indirectly), and is the current mechanism
by which the Toolkit interfaces with the rest of the SDPS. The mechanism may change in the future, but the interface to your code will not.

3.1.2 Constructing your Process Control file
This section explains how to customize a Process Control File for use in your code.

A default Process Control File (PCF) is included in the TK5.1.1 delivery. It contains entries which are either required or optional for use of many Toolkit
functions. This file is named $PGSRUN/PCF.relA.template. The particular example we use here is from the Pathfinder AVHRR/Land Toolkit Prototype
study. The complete example file appears in Appendix B of this document.

It is recommended that you start with the same (customized) copy of the PCF each time you run at the SCF, especially if you are using temporary files
in your processing. You don't want previous temporary file references in the PCF, since these files are deleted by the system (unless you are not using
PGS_PC_Shell.sh or PGS_PC_TermCom).

The Unix environment variable $PGS_PC_INFO_FILE must point to your Process Control file in order for the Toolkit to work at all.
We go through the example file section-by-section. The sections of a Process Control file include:

SYSTEM RUNTIME PARAMETERS
PRODUCT INPUT

PRODUCT OUTPUT

SUPPORT INPUT

SUPPORT OUTPUT

USER-DEFINED RUNTIME PARAMETERS
INTERMEDIATE INPUT

INTERMEDIATE OUTPUT

TEMPORARY IO

All sections of the PCF, except the SYSTEM RUNTIME PARAMETERS and USER- DEFINED RUNTIME PARAMETERS sections, consist of names,
locations and other data about physical files. Each of these sections has a default file location, which is at the beginning of the section. The default file
location is delimited by a '!" in column one of the PCF. This location points to the default directory in which these files are stored. This may be
overridden for individual files, by inserting the fully-qualified physical directory path, as explained below. The PRODUCT INPUT section provides a
detailed example of considerations that apply to all sections that involve files. Explanations of other sections provide only differences unique to those
sections.

General considerations:

Process Control File: Pathfinder AVHRR/ Land Tool ki t

Pr ot ot ype

#

Env vari able PGS_PC_ | NFO FI LE nmust point to this file

Comments in a PCF are any lines that begin in the first column with "#".

? SYSTEM RUNTI ME PARAMETERS

The "?" symbol in the first column defines this line as the subject of the section. These nine subject names must not be changed nor deleted from the
PCF.

Blank lines are not allowed.

Pipe character "|" must be used to delimit fields.

The exclamation point "I" must be used to designate the default file location. This must appear before any file entries in each section of the PCF.
The entire length of any line in the PCF may not exceed 1000 characters.

Different sections of the PCF have different numbers of required and optional fields for each entry. In the examples below, each entry is identified as
required or optional.

3.1.2.1 SYSTEM RUNTIME PARAMETERS
? SYSTEM RUNTI ME PARAMETERS

Production Run ID - unique production run identifier

This string identifies the particular run of your algorithm at the SDPS. This field is required, and may be up to 200 characters. It cannot be the string
Q.

Software ID - unique software configuration
identifier

This string identifies the particular software of which your PGE consists. This field is required, and may be up to 200 characters. It cannot be the
string "0".

In the production system, both of these fields are written into the PCF by the SDP Planning and Scheduling sub-system. At the SCF, you may use any
string you like. Note that the 'Production Run Id' value is used in the naming of Temporary and Intermediate files.

Currently these are the only two fields allowed in this section. DAAC and hardware identification are being considered as additions to the configuration
data, for future deliveries of the Toolkit.

3.1.2.2 PRODUCT INPUT

This section is for primary data files used as input to create standard products. This includes such files as ancillary data, Level 0 data, and standard
products output from other PGEs; in general, all of your input files.

? PRODUCT | NPUT FI LES
[next line is for default location]
' ~/runtinme

Environment variable PGSHOME/runtime is the default location of the files in this section, unless it is overridden for individual files, as explained
below. Note that the tilde character "~" is equated to the environment variable PGSHOME. This is true throughout the entire PCF. This particular
default file location $PGSHOME/runtime must not be changed, because of the way the Toolkit Ancillary Data Access input files are handled.
Default file locations of all other sections of the PCF may be changed to whatever you like.

201| 87002002709. no9_gac]|
401| gol dt opol andsea8. bi n
402| gri dtonms_1987_sngl _n
403| ephenB788. dat | | | |
404| ti mecorr8788. dat |
405| SDSannot at i ons. da
406| HDFnet adat a. dat | |
410| j an021987. pr ocl og

=

|
|
t
|
|

201| 87002002709. no9_gac| | ||| 1

The first entry in this section is used as an example; it is the primary input file for Pathfinder AVHRR/Land processing.

201| 87002002709. no9_gac| | ||| 1

Field 1 is the link between your software and this PCF entry, the logical identifier. This identifier should be associated with a mnemonic in your code,
at the beginning of the module where you use PGS_IO_Gen_Open to open this file, as shown below. This field is required, and must be an integer,
of type PGSt_integer (long) in C, INTEGER in Fortran. Science software may use any positive integer for logical identifiers, except integers in the
range 10,000-10,999; these numbers are reserved for the Toolkit.

In C, the form of this is

#define GAC FILE 201

In Fortran,

PARAVETER (GAC_FI LE=201)
You then use GAC_FILE as an input parameter to Toolkit function PGS_IO_Gen_Open.

Note that while you can use hard-coded numbers in calling sequences, instead of mnemonics (C) or parameters (Fortran), this will make things
difficult for integration and test, and also for maintainance; this practice is strongly discouraged.

201| 87002002709. no9_gac| | ||| 1

Field 2 is the file reference, currently the actual physical filename, unqualified (i.e., without directory information). In the future production system, this
mechanism may change (for example to a Universal Reference), but this will not affect the science software. This field is required, and is a string of
up to 256 characters.

201| 87002002709. no9_gac| | ||| 1

Field 3 is the path name, for overriding the default directory. In this example, the Toolkit will look for this file in location $PGSHOME/runtime
/87002002709.n09_gac. If instead this entry were

201| 87002002709. no9_gac|/fire2/toma/datal|||1

then the Toolkit would look for this file in /fire2/toma/data/87002002709.n09_gac. This field is optional, and is a string of up to 100 characters.

201| 87002002709. no9_gac| | | | | 1

Field 4, blank here, is reserved for future use.

201| 87002002709. no9_gac| | ||| 1

Field 5, blank here, is the universal reference. It may contain any string of up to 150 characters. This value may be returned by calling the function
PGS_PC_GetUniversalRef.

201| 87002002709. no9_gac| | ||| 1

Field 6, blank here, is the attribute location. It is the name of a file that contains data about the file of Field 2. This file must be in the same directory
as the file in Field 2. This field is optional, and is a string of up to 256 characters. For an example of an attribute file, see the descriptions of the
PGS_PC_Get*Attr Tools.

201| 87002002709. no9_gac| | ||| 1

Field 7 is the sequence number. It is used if there is more than one physical file associated with the logical identifier of Field 1, which is normally only
the case for PRODUCT INPUT and PRODUCT OUTPUT files.

At the SCF, you must assign this sequence number to each instance of the file in the PCF; at the DAAC, this is done by the production system.

The actual value of the sequence number is not relevant to your code; it is an internal number used by the production system.

At the SCF, you must list these sequence numbers in the PCF starting with the largest first, then decrementing by one, down to the smallest (1), as
shown in the example.

The version number, which is used as an argument to Toolkit functions that access different instances of a file, is not the same as sequence number.
The version number is the order which the files are listed in the PCF, from smallest (1) to largest.
As an example, if the PCF contains the entries

201| 87002002710. no9_gac| | ||| 2
201| 87002002709. no9_gac| ||| |1

then file 87002002710.n09_gac is version #1 (sequence #2), and file 87002002709.n09_gac is version #2 (sequence #1).
No information about file content may be inferred from sequence number. This number is for internal system use only.
Use the version number, i.e., the order of listing of PCF entries, as the input to appropriate Toolkit functions.

(As you may have noticed, it so happens that the the version numbers specified in your code run opposite to the sequence numbers defined in the
PCF.)

Field 7 is required for PRODUCT INPUT and PRODUCT OUTPUT files (but is optional for all other sections of the PCF). It must be an integer.

The rest of the entries in the PRODUCT INPUT section of the Pathfinder AVHRR/Land Toolkit Prototype file (Appendix B), in the section labeled
"Toolkit product input files", are Toolkit files. These are normally not modified.
3.1.2.3 PRODUCT OUTPUT

This section is for standard product output files.

? PRODUCT QUTPUT FI LES
[next line is for default location]

I ~/runtinme

#

H o e o e me e
Pat hfi nder AVHRR/ Land nain output file

B m e m e
301|test1l. hdf|]|]]]|1

This file is defined in C code as

#define HDF_FI LE 301
or in Fortran code as
PARAVETER (HDF_FI LE=301)
It resides in directory $PGSHOME/runtime. It does not have an attribute file.

This section has the same fields as PRODUCT INPUT.
3.1.2.4 SUPPORT INPUT

This section is primarily for files that are input to Toolkit functions. Ordinarily, you would not modify any entries in this section. An exception to this is
the template files used for ancillary files; see the Ancillary Data Access Tools section.

? SUPPORT I NPUT FI LES
[next line is for default |ocation]

' ~/runtime

#
2
Pat hfi nder AVHRR/ Land support input files

H e

They reside in directory $PGSHOME/runtime. They have no attribute files.
This section has the same fields as PRODUCT INPUT and PRODUCT OUTPUT, except that Field 7 is not required>
There are no support input files in the Pathfinder AVHRR/Land Toolkit Prototype.

The entries in the SUPPORT INPUT section of the Pathfinder AVHRR/Land Toolkit Prototype file (Appendix B) are Toolkit files, mostly to support the
Ancillary Data Access (AA) Tools. You may modify these, as explained in the AA Tools section of this document.

3.1.2.5 SUPPORT OUTPUT
This section is primarily for files that are output from Toolkit functions

? SUPPORT QUTPUT FI LES

[next line is for default |ocation]
' ~/runtinme

#

This section has the same fields as PRODUCT INPUT and PRODUCT OUTPUT, except that Field 7 is not required.
There are no support output files in the Pathfinder AVHRR/Land Toolkit Prototype.

The Toolkit files in this section support the SMF Log files . You may change the names of the files and directories if you want, but not the logical
identifier (Field 1).
3.1.2.6 USER-DEFINED RUNTIME PARAMETERS

This section of the PCF is different from the other sections in that it does not contain information about files. Instead, it may be used to obtain other
kinds of information from the production environment.

? USER DEFI NED RUNTI ME PARAMETERS

601| request ed_si ze_x]| 409
602| request ed_si ze_y| 128
603|wait _tinme|3

601| request ed_si ze_x| 409

https://newsroom.gsfc.nasa.gov/sdptoolkit/primer/pcfile.html
https://newsroom.gsfc.nasa.gov/sdptoolkit/primer/pcfile.html

Field 1 is as always the logical identifier. This field is required.

601| request ed_si ze_x| 409

Field 2 is the parameter name. It is an optional text string of up to 200 characters. The Toolkit ignores this field; its intended use is for identification in
this PCF, so you may enter whatever you like here. In the Pathfinder AVHRR/Land Toolkit Prototype, the name of the variable in the code is used for
this purpose.

601| request ed_si ze_x| 409

Field 3 is the parameter value. This is read into your code as a string of up to 200 characters by the Toolkit (PGS_PC_GetConfigData). Your code is
responsible for any necessary conversion. e.g. to integer. This field is required.

Toolkit files in this section support the sending of files and email to remote locations. For an explanation of these entries in the PCF, see the Notes
section of the Tool Description for PGS_SMF_SendRuntimeData.

3.1.2.7 INTERMEDIATE INPUT

? | NTERVEDI ATE | NPUT

[next line is for default |ocation]
' ~/runtinme

#

This section and the next are for intermediate files, or files that will exist for longer than a single PGE, but are not standard products. This section is for
intermediate input files.

This section has the same fields as PRODUCT INPUT and PRODUCT OUTPUT, except that Field 7 is not required. The unqualified file name (Field
2) is ordinarily the name of a file that was generated as an INTERMEDIATE OUTPUT file by a previous run of this PGE. At the SCF, if you are testing
successive runs of a PGE which share intermediate files, you need to make sure that the logical identifier is the same in the PCF that you use for all
the runs. If you are accessing the intermediate file from a different PGE than the one that created it, you also need to make sure that the mnemonic
definitions in your code reference the same logical identifier. You should also copy over the file name if you use a different PCF.

How intermediate files are handled in the production environment, specifically how long they stay around, has not been determined at this writing.
Use function PGS_IO_Gen_Temp_Open (C) or PGS_IO_Gen_Temp_OpenF (Fortran) to open intermediate files.

There are no intermediate files in the Pathfinder AVHRR/Land Toolkit Prototype.
3.1.2.8 INTERMEDIATE OUTPUT

? | NTERMEDI ATE OUTPUT

[next line is for default |ocation]

I ~/runtine
#

This section is for intermediate output files.
Entries for this section of the PCF are created by the Toolkit; you do not need to enter values.

This section has the same fields as PRODUCT INPUT and PRODUCT OUTPUT, except that Field 7 is not required. The unqualified file name (Field
2) is generated by the Toolkit.

How intermediate files are handled in the production environment, specifically how long they stay around, has not been determined at this writing.
Use function PGS_IO_Gen_Temp_Open (C) or PGS_IO_Gen_Temp_OpenF (Fortran) to open intermediate files.

There are no intermediate files in the Pathfinder AVHRR/Land Toolkit Prototype.
3.1.2.9 TEMPORARY IO

Temporary files are files that exist only for the duration of a single PGE; the production system deletes these files automatically on PGE termination.
(You may use the function PGS_IO_Gen_Temp_Delete to do this at the SCF.) Since a single PGE may consist of several of your executables, this
section is part of the PCF to enable these files to be passed among these executables.

Entries for this section of the PCF are created by the Toolkit; you do not need to enter values. The unqualified file name (Field 2) is generated by the
Toolkit.

? TEMPORARY | O
[next line is for default |ocation]

' ~/runtinme

#

H e me e
Pat hfi nder AVHRR/ Land tenporary file

B m e m e

901| pc1157318822894183312| | 0] 0] 0] O

This file is defined in C code as

#defi ne Bl NARY_QUTPUT 901
or in Fortran code as

PARAMETER (BI NARY_OUTPUT=901)

It resides in directory $PGSHOME/runtime. It has no attribute file.

If you are sharing this temporary file among executables in the same PGE, then you need to have the same #define or PARAMETER statement in the
code for each appropriate executable.

Use function PGS_IO_Gen_Temp_Open (C) or PGS_IO_Gen_Temp_OpenF (Fortran) to open temporary files. Use function
PGS_IO_Gen_Temp_Delete to delete files you no longer need within a PGE.

This section has the same fields as PRODUCT INPUT and PRODUCT OUTPUT, except that Field 7 is not required.
3.1.2.10 End of PCF

All PCFs must end with the line

? END

Any information after this line is ignored.

3.1.3 Checking your Process Control File

Now that you have created your PCF, you can use it from your software through use of the Toolkit. However, you might want to check it to see if you
have entered everything correctly. You can do this by using the pccheck utility, a Unix executable included with the Toolkit. This program is compiled
at the time of Toolkit installation, and is located in directory $PGSBIN. You execute shell script pccheck.sh, which calls executable pctcheck; its
source code is $PGSSRC/PC/PGS_PC_Check.c . To run it on your file mypcfile, on the Unix command line type

$PGSBI N pccheck. sh -i nypcfile

If there are any errors in your file, you will see messages of the form

Error - problemw th version nunber in Standard input file
Li ne nunmber: 23
Li ne: 401| gol dt opol andsea8. bin||]|]]

In this example the version number was omitted from the STANDARD INPUT file entry.

At the end, you will see a summary of the form

Check of nypcfile conpleted
Errors found: 7
Warni ngs found: O

For this utility, a pccheck error is defined as a PCF entry that will cause a Toolkit PC function to return an error message. A pccheck warning is
defined as an incorrect entry that will not cause the Toolkit trouble, but may cause the PGE to operate incorrectly. For example, a blank character in
the file name field does not bother a Toolkit PC function, since it simply returns the string as is; pccheck will not return an error. But a blank character
will certainly cause a Unix error, when the file open is attempted by a Toolkit function; pccheck will return a warning to this effect. Output is returned to
stdout (usually the screen).

This is a simple explanation of how the pccheck utility works. For details, including a list of error messages, and information about other command line
options, see "Validating Process Control Files", sec. C.2 of Appendix C, in the Toolkit Users Guide.

3.1.4 Metadata considerations

Protoype metadata (MET) tools, which format standard product metadata for ingest to the data server(SDS), will be available in the next Toolkit
delivery.

For the present, the only Toolkit functions that deal with data about data are the tools PGS_PC_GetFileAttr, PGS_PC_GetFileAttrCom and PGS_PC_
GetFileByAttr. These functions are involved in retrieving file "attribute" data from the system, via the Process Control file. Essentially, you can get
character string metadata from a text file using these functions.

Since details about how the production system handles metadata are not yet available, this mechanism was determined to be the best that can be
done about this issue at the moment. Every effort will be made to keep the calling sequence unchanged for these tools in the future. However, given
the uncertainties about this issue, this cannot be guaranteed.

3.1.5 Command tools for use in shell scripts

This section briefly describes the usage of the set of Command tools, which are callable from Unix shell scripts. These tools are generally identified by
the suffix "Com" in the function name.

Tool PGS_PC_Shell.sh is used to call your PGE. It is strongly recommended that you call your PGE from this function during testing at the SCF;
among other things, it enables Toolkit (not user) shared memory, which speeds execution of certain Toolkit functions.

You must use either this tool or PGS_PC_InitCom if you want to enable the creation of Toolkit log files.

You must use either this tool or PGS_PC_TermCom if you want to send any files to a remote machine, through use of function PGS_SMF_SendRunti
meData.

Tools PGS_PC_InitCom and PGS_PC_TermCom are used to initialize and terminate your PGE respectively.

Ordinarily you would not use these, as they are called internally by PGS_PC_Shell.sh. They are included in the Toolkit documentation for reference in
case you wish to customize PGS_PC_Shell.sh for some reason; however, please note that any such customization is not part of your delivery to the
DAAC.

Note: The above three functions are used at the DAAC as well as at your SCF; however, it is not necessary to include them in scripts that you deliver
to the DAAC for Integration and Test. They are included as part of the Toolkit delivery for your use in testing at the SCF.
The three functions are to be used outside of your PGE.

https://git.earthdata.nasa.gov/rest/git-lfs/storage/DAS/sdptoolkit/b233846c983d7a9c2d26f4800f1c43f00e0ea243ea97bb31426aa9f52bf9ec40?response-content-disposition=attachment%3B%20filename%3D%22UG.pdf%22%3B%20filename*%3Dutf-8%27%27UG.pdf

The rest of the PGS_PC_*Com tools are simply wrappers on Toolkit API tools. These functions are for use inside your PGE.

Further details are given in the Tool Descriptions.
3.2 Process Control (PC) Tool descriptions
3.2.1 PGS_PC_InitCom

Short explanation of what it's for: Command line function for initializing the Toolkit for use with your PGE.
Normally not used at the SCF, since its functionality is fully covered by PGS_PC_Shell.sh.

This function is in file: $PGSSRC/PC/PGS_PC_InitCom.c

Shell example:

Execute a PGE, enabling Tool kit (not user) shared nenory,
and also initializing creation of Toolkit log files,
and have an SMF Cache size of 50.

uni x% PGS _PC | nitCom1 1 50
Notes:

You might want to use this function if you decide to write a custom script to call your PGE, in lieu of using PGS_PC_Shell.sh; however, please note
that any such customization is not part of your delivery to the DAAC.

This function enables your PGE to

® Use Toolkit (not user) shared memory, which speeds up Toolkit processing
® Automatically load the Process Control File into Toolkit shared memory
® Automatically create Toolkit log files

The first argument of this function is for turning on or off Toolkit (not user) shared memory, if available; the second argument is for turning on or off
creation of Toolkit log files. The third argument is to specify the amount (in records) of SMF Cache memory to reserve for the storage of SMF
messages.

In the example "unix%" is the Unix command line prompt.

For this particular function, the example is identical for any Unix shell.

3.2.2 PGS_PC_GenUniquelD

Short explanation of what it's for: Generates a string that uniquely identifies your standard product output file. May be used as file metadata.
This function is in file: $PGSSRC/PC/PGS_PC_GenUniquelD.c

Examples:

The examples assume the following exist in the Process Control File (PCF):

? SYSTEM RUNTI ME PARAMETERS

Production Run ID - unique production instance identifier

Software I D - unique software configuration identifier

C exanpl e:

#i ncl ude <PGS_PC. h>

#define HDF_FILE 301

char uni quel D[PGSd_PC_LABEL_SI ZE_VMAX] ;
PGSt _SMF_st at us returnStat us;

/*

Begi n exanpl e

*/

returnStatus = PGS_PC_GenUni quel D(HDF_FI LE, uni quel D) ;
/*

Vari abl e uni quel D now contains the string
"PRID - 1 SID- 1 PRODID - 301"

*/

Fortran exanpl e:

I MPLICI T NONE

I NCLUDE ' PGS_SMF. '

I NCLUDE ' PGS_PC. f'

I NCLUDE ' PGS_PC 9. f'

I NTEGER pgs_pc_genuni quei d
| NTEGER HDF_FI LE
PARAVETER(HDF_FI LE=301)
CHARACTER* 200 uni quei d

I NTEGER r et ur nst at us

g Begi n exanpl e

¢ returnstatus = pgs_pc_genuni quei d(HDF_FI LE, uni quei d)
g ari abl e uni quei d now contains the string

C'PRRD- 1SID- 1 PRODID - 301'

(l\:lot es

The mechanism for using the output of this function as file metadata has not yet been defined.

4. Generic I/0 (I0_Gen) Tools

4.1 Overview

This section describes the Generic 1/0 (I0_Gen) Tools. These tools are used in your code where appropriate to open, close and delete various files,
such as temporary, intermediate, and other miscellaneous files. They are also used by the Toolkit to access ancillary, Level 0 and other files.

These tools are unique in the Toolkit in that there are different versions of the source code, and different calling sequences for C and FORTRAN for
each tool (except PGS_IO_Gen_Temp_Delete); in contrast to the rest of the Toolkit, which is written in C with FORTRAN bindings. This is necessary
because of the different ways C and FORTRAN define file handles, since these file handles are input to the native C and FORTRAN 1/O functions
such as fscanf and READ. FORTRAN functions are identified by the suffix "F".

A couple of definitions are in order: a temporary file is one that exists only for the duration of a single PGE, but may be shared between executable
modules within that PGE; an intermediate file is one that may stick around for a user-defined time.

Special note regarding HDF: No Toolkit functions exist yet to access HDF files; currently you are to use the native NCSA functions for HDF access. To
see how to get the physical filename needed as input to the NCSA HDF open file function, see the example for Toolkit function PGS_PC_GetReference

4.2 Tool Descriptions
This section contains an alphabetical listing of the descriptions of the individual PGS_IO_Gen_* tools.

4.2.1 PGS _10_Gen_Close

Short explanation of what it's for: Close a file that was opened by PGS_IO_Gen_Open or PGS_IO_Gen_Temp_Open (C version).
This function is in file: $PGSSRC/IO/GEN/PGS_IO_Gen_Close.c

Examples:

C example:

#i ncl ude <PGS_|1 O h>

PGSt _| O_Gen_Fi | eHandl e *handl e;

PGSt _SMF_st at us returnStat us;

/ *

Begi n exanpl e

*/

returnStatus = PGS_I O _Gen_Cl ose(handle);

FORTRAN example:

This function is not callable from FORTRAN. See PGS_IO_Gen_CloseF .
Notes:

The Toolkit internally keeps track of which files have been opened and closed.

4.2.2 PGS_I0_Gen_CloseF

Short explanation of what it's for: Close a file that was opened by PGS_IO_Gen_OpenF or PGS_IO_Gen_Temp_OpenF (FORTRAN version).
This function is in file: $PGSSRC/IO/GEN/PGS_IO_Gen_CloseF.f

Examples:

C example:

This function is not callable from C. See PGS_IO_Gen_Close.

FORTRAN example:

| MPLI CI T NONE
| NCLUDE ' PGS_SMF. f '
I NCLUDE ' PGS_PC. f'

I NCLUDE ' PGS_PC 9. f*
I NCLUDE ' PGS_I O f '

I NCLUDE ' PGS | O 1. f"

| NTEGER pgs_i 0_gen_cl osef
I NTEGER handl e
I NTEGER returnstatus
C Begi n exanpl e
returnstatus = pgs_i o_gen_cl osef (handl e)
Notes:
The Toolkit internally keeps track of which files have been opened and closed.
4.2.3 PGS _I0_Gen_Open
Short explanation of what it's for: Open a generic file (C version). Intended for use in opening miscellaneous files in your software (see Notes).
This function is in file: $PGSSRC/IO/GEN/PGS_IO_Gen_Open.c

Examples:

The example assumes the following exists in the Process Control File (PCF):
? PRODUCT I NPUT FILES

401| gol dt opol andsea21. bi n
401]| gol dt opol andsea33. bi n

C example:

#i ncl ude <stdio. h>
#i ncl ude <PGS_|1 O h>
#defi ne GOLDEN_BI NARY 401
PGSt _| O Gen_Fi | eHandl e *processCol den;
PGSt _i nt eger version;
| ong xScal e;
PGSt _SMF_st at us returnStatus;
/*
Begi n exanpl e
*/
/*
QOpen a file for read
*/
version = 1;
returnStatus = PGS_| O_Gen_Open(GOLDEN_BI NARY,
PGSd_I O_Gen_Read, &processGol den, version);

/*
The file $PGS_PRODUCT_I NPUT/ gol dt opol andsea2l1. bin is now open
(see Notes)
*/
/*

Fil e handl e variabl e processGol den nmay now be used as
an argurment to any native C 1/0O function that takes a
vari abl e of type FILE as input, e.g.,

*/

fscanf(processCol den, "%d", &xScale);

FORTRAN example:
This function is not callable from FORTRAN. See PGS_IO_Gen_OpenF .

Notes:

Use NCSA HDF open function Hopen to open standard product files. Use other Toolkit functions to open Ancillary and Level O files. Use
PGS_IO_Gen_Temp_Open to open temporary and intermediate files. This function is for opening any other files.

In the example, the user requested version 1 of the GOLDEN_BINARY file to be opened. This refers to the first entry in the PC file, i.e., file goldtopola
ndsea21.bin. The sequence numbers in the PC file are in reverse order from the version numbers used in arguments to Toolkit functions. So in the PC
file, the entry for file goldtopolandsea21.bin has sequence number 2. For further explanation of sequence numbers in the PC file, see section 4.1.2.2

of the Process Control Overview, "PRODUCT INPUT".

The Toolkit internally keeps track of which files have been opened and closed.

A valid Process Control file (PCF) must have been constructed before using this tool. See section 4, "Process Control (PC) Tools".

The following is a complete listing of the access modes available (2nd argument in calling sequence):

PGS_IO_Gen_Open Access Modes

Tool ki t C Descri ption
PGSd_I O_Gen_Read "r Open file for reading
PGSd_| O Gen_Wite "w Open file for witing, truncating

existing file to O length, or
creating a new file

PGSd_I O_Gen_Append "a" Open file for witing, appending
to the end of existing file, or
creating file

PGSd_I O_Gen_Updat e "r+" Open file for reading and witing

PGSd_I O_Gen_Trunc "w+" Open file for reading and witing,
truncating existing file to zero
length, or creating newfile

PGSd_I| O Gen_AppendUpdate "a+" Open file for reading and witing,
appending to the end of existing
file, or creating a new file;
whole file can be read, but
witing only appended

ToolkitMnemonic used as 2nd argument in calling sequenceCEquivalent access mode for native POSIX C function fopenDescriptionToolkit access
mode description

that was typically observed was for data, buffered during a read
operation, to be appended to the file along with other data that was

being written to the file. Note that this behavior could not be attributed

to the Toolkit since the same behavior was revealed when purely "POSIX"
calls were used.

If you are using the Toolkit LogStatus log file, you may see a sequence of messages like this:

PGS_PC_Get PCSDat aCet | ndex() : PGSPC_W NO _FI LES_EXI ST: 76802
No files exist for product group

PGS_PC_Get PCSDat aLocat eEnt ry(): PGSPC_W NO_FI LES_EXI ST: 76802
No files exist for product group

PGS_PC_Get PCSDat a() : PGSPC_W NO_FI LES_EXI ST: 76802
No files exist for product group

The presence of these messages is an artifact of the way the Toolkit access the Process Control file. Up to 4 sets of these messages (12 total) are

generated each time PGS_IO_Gen_Open is called.
A means of limiting this to one set of messages will be in place by the TK5 delivery of July 1995.

4.2.4 PGS_lIO_Gen_OpenF

Short explanation of what it's for: Open a generic file (FORTRAN version). Intended for use in opening miscellaneous files in your software (see
Notes).

This function is in file: $PGSSRC/IO/GEN/PGS_IO_Gen_OpenF.f (f77 version), $PGSSRC/IO/GEN/PGS_IO_Gen_OpenF90.f (F90 version).
Examples:

The example assumes the following exists in the Process Control File (PCF):

? PRODUCT | NPUT FI LES

401| gol dt opol andsea21. bi n
401]| gol dt opol andsea33. bi n
C exanpl e:

https://newsroom.gsfc.nasa.gov/sdptoolkit/primer/pc_overview.html
https://newsroom.gsfc.nasa.gov/sdptoolkit/primer/smf_overview.html#Logfiles

This function is not callable from C. See PGS_IO_Gen_Open .

FORTRAN example:

I MPLI CI T NONE

I NCLUDE ' PGS_SMF
I NCLUDE * PGS_PC.
I NCLUDE ' PGS_PC_
I NCLUDE ' PGS_I O
I NCLUDE ' PGS_I O 1. f"

| NTEGER GOLDEN_BI NARY
PARAMETER (GOLDEN_BI NARY=401)
I NTEGER pgs_i o_gen_openf

I NTEGER processgol den

I NTEGER ver si on

I NTEGER xscal e

I NTEGER r et ur nst at us

e
£
9. f'
f

C
C Begi n exanpl e
C
C Open a sequential unformatted file for read
C

version = 1

returnstatus = pgs_i o_gen_openf(GOLDEN_BI NARY,

PGSd_I| O Gen_RSeqUnf, 0, processgol den, version)

C
C The file $PGS_PRODUCT_I NPUT/ gol dt opol andsea21. bin i s now open
C (see Notes)
C
C File handl e vari abl e processCGol den may now be used as
C an argunent to any native |/O FORTRAN function, e.g.,
C

READ(pr ocessGol den) xscal e
Notes:

Use NCSA HDF open function Hopen to open standard product files. Use other Toolkit functions to open Ancillary and Level O files. Use
PGS_10_Gen_Temp_OpenF to open temporary and intermediate files. This function is for opening any other files.

All FORTRAN access modes are supported. For an example of using direct access files, see the examples for function PGS_IO_Gen_Temp_Open.
The 3rd argument of PGS_IO_Gen_OpenF is for specifying record length.

In FORTRAN 77, this value must be at least 1 for direct access files; it is ignored for sequential files (as in the example).

In FORTRAN 90, this value must be at least 1 for direct access files. For sequential access, if this value is 0, the file is opened with a platform-
dependent record length; otherwise, it is opened with the specified record length.

Files which are opened with one of the direct access modes must have been created by FORTRAN direct access writes. That is, you cannot expect
to read a file with direct access reads if the file is sequential.

In the example, the user requested version 1 of the GOLDEN_BINARY file to be opened. This refers to the first entry in the PC file, i.e., file goldtopola
ndsea21.bin. The sequence numbers in the PC file are in reverse order from the version numbers used in arguments to Toolkit functions. So in the PC
file, the entry for file goldtopolandsea21.bin has sequence number 2. For further explanation of sequence numbers in the PC file, see section 4.1.2.2

of the Process Control Overview, "PRODUCT INPUT".

The Toolkit internally keeps track of which files have been opened and closed.

A valid Process Control file (PCF) must have been constructed before using this tool. See section 4, "Process Control (PC) Tools".

The following is a complete listing of the access modes available (3rd argument in calling sequence):

PGS_I O_Gen_OpenF Access Mbdes

* K k% FWRAN****

Tool ki t node 'access=' "forn¥
PGSd_I| O_Gen_RSeqFrm Read Sequenti al Format t ed
PGSd_I O_Gen_RSeqUnf Read Sequenti al Unformat t ed
PGSd_I O Gen_RDirFrm Read Direct Format t ed
PGSd_I| O_Gen_RDi r Unf Read Direct Unf ormat t ed

PGSd_I O Gen_WsegqFrm Wite Sequenti al For mat t ed
PGSd_I O_Gen_WseqUnf Wite Sequenti al Unf ormat t ed
PGSd_I O Gen_WDirFrm Wite Direct For mat t ed
PGSd_I O_Gen_WDi r Unf Wite Direct Unformat t ed

PGSd_I O Gen_USeqFrm Update Sequenti al For mat t ed
PGSd_I O_Gen_USeqUnf Update Sequenti al Unf ormat t ed
PGSd_I O Gen_UDirFrm Update Direct Format t ed
PGSd_| O_Gen_UDi r Unf Update Direct Unf or nat t ed
The foll owi ng nodes are avail able in FORTRAN 90 only:

PGSd_I| O Gen_ASeqFrm Append Sequenti al Format t ed
PGSd_I O_Gen_ASeqUnf Append Sequenti al Unformatted

ToolkitMnemonic used as 2nd argument in calling sequencemodeType of access allowed'access="Equivalent argument of ACCESS parameter in
FORTRAN OPEN function'form="Equivalent argument of FORM parameter in FORTRAN OPEN function

If you are using the Toolkit LogStatus log file, you may see a sequence of messages like this:

PGS_PC_Get PCSDat aCet | ndex() : PGSPC_W NO FI LES_EXI ST: 76802
No files exist for product group

PGS_PC_Get PCSDat aLocat eEnt ry(): PGSPC_W NO_FI LES_EXI ST: 76802
No files exist for product group

PGS_PC_Get PCSDat a() : PGSPC_W NO_FI LES_EXI ST: 76802
No files exist for product group

The presence of these messages is an artifact of the way the Toolkit access the Process Control file. Up to 4 sets of these messages (12 total) are
generated each time PGS_IO_Gen_OpenF is called.

A means of limiting this to one set of messages will be in place by the TK5 delivery of July 1995.

This function corresponds to two similar but separate source code files, one for FORTRAN 77, and one for FORTRAN 90. The FORTRAN 90 version

has all the functionality of the FORTRAN 77 version, plus support for (1) Append mode and (2) specification of record length for sequential files.
The installation script compiles one of these versions, based on which flavor of FORTRAN you specified at the time of Toolkit installation.

4.2.5 PGS 10_Gen _Temp_ Delete

Short explanation of what it's for: Mark a temporary file for deletion. You would use this tool if you want to re-use a logical ID used by a temporary
file you no longer need, to open a new temporary file.

This function is in file: $PGSSRC/IO/GEN/PGS_IO_Gen_Temp_Delete.c.
Examples:

C example:

#i ncl ude <PGS_1 O h>
#defi ne TEMP_BI NARY 901
PGSt _SMF_st at us returnStat us;

returnStatus = PGS_| O Gen_Tenp_Del ete(TEMP_BI NARY);

/* The file corresponding to |ogical |ID TEMP_BINARY is
now nmarked for deletion; the logical ID may be used to
open another file using PGS | O Gen_Tenp_Open. */

FORTRAN example:

https://newsroom.gsfc.nasa.gov/sdptoolkit/primer/io1.html#TempOpen

I MPLI CI' T NONE

I NCLUDE ' PGS_SMF. f
I NCLUDE ' PGS_PC. f

I NCLUDE ' PGS_PC 9. f'
I NCLUDE ' PGS I O f*

I NCLUDE ' PGS 1O 1. f"

| NTEGER TEMP_BI NARY
PARAMETER (TEMP_BI NARY=901)
I NTEGER pgs_i o_gen_tenp_del ete
I NTEGER r et ur nst at us
C
C Begi n exanpl e
C

returnstatus = pgs_i o_gen_tenp_del ete(TEMP_BI NARY)
C The file corresponding to |l ogical 1D TEMP_BINARY is
C now marked for deletion; the logical ID may be used to
C open another file using PGS_| O Gen_Tenp_QOpenF.
Notes:
This function is only for use with Temporary files, and not Intermediate files.
This function merely marks Temporary files for deletion, so you can re-use the same logical ID. It does not physically delete files.
If you are using PGS_PC_Shell.sh to wrap your PGE, then your Temporary files are automatically deleted at PGE termination.
If you are not wrapping your PGE with the shell, you should delete your Temporary files manually before each of your test runs. In addition, you need
to start with a fresh Process Control file, i.e., the PCF at the beginning of any run should have no entries in the TEMPORARY 1/O section.
In the production environment, Temporary files are always deleted automatically at the end of your PGE (since PGS_PC_Shell.sh is used there).

This is the only PGS_lO_Gen function that has no separate FORTRAN version. FORTRAN access is provided through bindings to the C code, as in
the rest of the Toolkit.

4.2.6 PGS 10_Gen_Temp_Open

Short explanation of what it's for: Open a temporary or intermediate file (C version). Temporary files exist for the duration of one PGE only;
intermediate files may have a longer duration.

This function is in file: $PGSSRC/IO/GEN/PGS_IO_Gen_Temp_Open.c.
Examples:

The example assumes the following exists in the Process Control File (PCF):

? | NTERVEDI ATE | NPUT
[set env var PGS_| NTERMEDI ATE | NPUT for default |ocation]
701]| pc1150283201028000395104034| | | | |

| NTERVEDI ATE OUTPUT
[set env var PGS_| NTERVEDI ATE_QUTPUT for default |ocation]

TEMPORARY | O
[set env var PGS _TEMPORARY_| O for default |ocation]

N HH O HH YK

END

C example:

#i ncl ude <PGS_I O h>

#define | NTERVEDI ATE_I N 701

#defi ne | NTERVEDI ATE_OUT 801

#defi ne TEMP_BI NARY 901

PGSt _| O Gen_Fi |l eHandl e *handl e;

I ong xScal e;

PGSt _SMF_st at us returnStat us;

/*

Begi n exanpl e

*/

/*

Open the existing intermediate input file for read

Read a val ue

Close it

*/

returnStatus = PGS_|I O Gen_Tenp_Open(PGSd_I O Gen_Endur ance,

I NTERVEDI ATE_I N, PGSd_I O Gen_Read, &handle);

fscanf(handle, "%d", &Scale);

returnStatus = PGS_|I O _ Gen_Cl ose(handle);

/*

You have just read a value fromfile

$PGS_| NTERMEDI ATE_| NPUT/ pc1150283201028000395104034

*/

/*

Open a new internediate output file for wite

Wite a value

Close it

*/

returnStatus = PGS_|I O Gen_Tenp_Open(PGSd_I O Gen_Endur ance,
| NTERVEDI ATE_OUT, PGSd_I O Gen_Wite, &handle);

fprintf(handle, "%d", xScale);

returnStatus = PGS_| O Gen_Cl ose(handle);

/*

You have just witten a value to a new file in directory

$PGS_| NTERVEDI ATE_OUTPUT

*/

/-k

Open a tenporary file for wite

Wite a value

Close it

*/

returnStatus = PGS_| O Gen_Tenp_Open(PGSd_I O Gen_NoEndur ance,
TEMP_BI NARY, PGSd_I O Gen_Wite, &handle);

fprintf(handle, "%d", xScale);

returnStatus = PGS_I O Gen_Cl ose(handle);

/*

You have just witten a value to a new file in directory

$PGS_TEMPORARY_| O

*/

FORTRAN example:
This function is not callable from FORTRAN. See PGS_IO_Gen_Temp_OpenF .
Notes:

The difference between this function and PGS_IO_Gen_Open is that this tool enables tracking of temporary and intermediate files in the production
system, as well as providing for file name generation.

The following applies to Temporary, not Intermediate, files:

Process Control file entries for Temporary files are generated automatically by the Toolkit. You should never create a PCF entry for a Temporary file.
If you are using PGS_PC_Shell.sh to wrap your PGE, then your Temporary files are automatically deleted at PGE termination.

If you are not wrapping your PGE with the shell, you should delete your Temporary files manually before each of your test runs. In addition, you need
to start with a fresh Process Control file, i.e., the PCF at the beginning of any run should have no entries in the TEMPORARY 1/O section.

In the production environment, Temporary files are always deleted automatically at the end of your PGE (since PGS_PC_Shell.sh is used there).

The first argument of PGS_10_Gen_Temp_Open specifies whether the file to open is Temporary or Intermediate. Currently this is a simple Boolean
value. In the future this argument may be changed to specify the duration of an intermediate file. The calling sequence will not change.

After the Toolkit calls given in the example have been executed, the last 3 sections of the Process Control file will look like this:

? | NTERVEDI ATE | NPUT

[set env var PGS_| NTERMVEDI ATE | NPUT for default |ocation]
701| pc1150283201028000395104034] | | | |

#

? | NTERMEDI ATE OUTPUT

[set env var PGS_| NTERMVEDI ATE_QUTPUT for default |ocation]
801| pc1150283201039509195162200] | | | |

#

? TEMPORARY | O

[set env var PGS_TEMPORARY_| O for default |ocation]

901| pc1150283201039509195162229] | | | |

#

? END

-- the toolkit has created file names for the new files and stored them in the PCF.

See the Notes section of tool PGS_PC_GetTempReferenceCom for an explanation of the form of the temporary file names.

A valid Process Control file (PCF) must have been constructed before using this tool. See section 4, "Process Control (PC) Tools".

The following is a complete listing of the access modes available (3rd argument in calling sequence):

PGS_IO_Gen_Temp_Open Access Modes

Tool ki t C Descri ption
PGSd_| O_Gen_Read "r Open file for reading
PGSd_I O Gen_Wite "w!' Qpen file for witing, truncating

existing file to O length, or
creating a new file

PGSd_I O_Gen_Append "a" Open file for witing, appending
to the end of existing file, or
creating file

PGSd_I O_Gen_Updat e "r+" Open file for reading and witing

PGSd_I O _Gen_AppendUpdate "a+" Open file for reading and witing,
appending to the end of existing
file, or creating a new file;
whole file can be read, but
witing only appended

ToolkitMnemonic used as 3rd argument in calling sequenceCEquivalent access mode for native POSIX C function fopenDescriptionToolkit access
mode description

that was typically observed was for data, buffered during a read

operation, to be appended to the file along with other data that was

being written to the file. Note that this behavior could not be attributed

to the Toolkit since the same behavior was revealed when purely "POSIX"
calls were used.

4.2.7 PGS _10_Gen_Temp_OpenF

Short explanation of what it's for: Open a temporary or intermediate file (FORTRAN version). Temporary files exist for the duration of one PGE
only; intermediate files may exist for a longer duration.

This function is in file:
$PGSSRC/IO/GEN/PGS_IO_Gen_Temp_OpenF.f (F77 version),
$PGSSRC/IO/GEN/PGS_IO_Gen_Temp_OpenF90.f (F90 version).

Examples:

The example assumes the following exists in the Process Control File (PCF):

? | NTERMEDI ATE | NPUT
[set env var PGS_| NTERMVEDI ATE | NPUT for default |ocation]
701| pc1150283201028000395104034| | | | |

| NTERMEDI ATE OQUTPUT
[set env var PGS_| NTERVEDI ATE_QUTPUT for default |ocation]

TEMPORARY | O
[set env var PGS _TEMPORARY_| O for default |ocation]

NOHH O HH O H

END

C example:
This function is not callable from C. See PGS_IO_Gen_Temp_Open .

FORTRAN example:

I MPLI CI' T NONE

| NCLUDE ' PGS_SMF
I NCLUDE ' PGS_PC.
I NCLUDE ' PGS_PC !
I NCLUDE ' PGS_I O
I NCLUDE ' PGS_I O 1. f"'

| NTEGER | NTERMEDI ATE_| N
PARAMETER (| NTERVEDI ATE_I N=701)

I NTEGER | NTERMEDI ATE_OUT
PARAMETER (| NTERMEDI ATE_QUT=801)
I NTEGER TEMP_BI NARY

PARAMETER (TEMP_BI NARY=901)

I NTEGER pgs_i o_gen_t enp_openf

I NTEGER pgs_i o_gen_cl osef

I NTEGER handl e

I NTEGER xscal e

I NTEGER recordl ength

I NTEGER r et ur nst at us

e
£
9. f'
f

C

C Begi n exanpl e

Cc

C Open the existing internedi ate sequential unformatted
C input file for read

C Read a val ue

Cdose it

Cc

returnstatus = pgs_io_gen_tenp_openf(PGSd_I O Gen_Endurance,
. I NTERVEDI ATE_I'N, PGSd_| O Gen_RSequnf, 0, handle)

READ(handl e) xscal e

returnstatus = pgs_io_gen_cl osef(handle)

ou have just read a value fromfile
PGS_| NTERMEDI ATE_| NPUT/ pc1150283201028000395104034

o<

en a new internediate direct access unformatted
output file for wite

ite a value

ose it

O00000000
o0z 9

recordl ength 4
returnstatus pgs_i o_gen_t enp_openf (
PGSd_I O_Gen_Endur ance, | NTERVEDI ATE_OUT,
. PGSd_I O Gen_WDi r Unf, recordl ength, handle)
WRI TE(handl e, REC=1) xscale
returnstatus = pgs_io_gen_close(handle)

ou have just witten a value to a newfile in directory
PGS_| NTERVEDI ATE_QUTPUT

@<

Open a tenporary sequential formatted file for wite
Wite a val ue
Close it

O0000000

returnstatus = pgs_i o_gen_tenp_openf (
PGSd_I O_Gen_NoEndur ance, TEMP_BI NARY,

. PGSd_I O Gen_WsegFrm, 0, handle)

WRI TE(handl e, 100) xscale
100 FORMAT(I 6)

returnstatus = pgs_i o_gen_close(handle)
C
C You have just witten a value to a new file in directory
C $PGS_TEMPORARY_| O
C

Notes:

The difference between this function and PGS_IO_Gen_Open is that this tool enables tracking of temporary and intermediate files in the production
system, as well as providing for file name generation.

The following applies to Temporary, not Intermediate, files:

Process Control file entries for Temporary files are generated automatically by the Toolkit. You should never create a PCF entry for a Temporary file.

If you are using PGS_PC_Shell.sh to wrap your PGE, then your Temporary files are automatically deleted at PGE termination.

If you are not wrapping your PGE with the shell, you should delete your Temporary files manually before each of your test runs. In addition, you need
to start with a fresh Process Control file, i.e., the PCF at the beginning of any run should have no entries in the TEMPORARY 1/O section.

In the production environment, Temporary files are always deleted automatically at the end of your PGE (since PGS_PC_Shell.sh is used there).

The first argument of PGS_IO_Gen_Temp_Open specifies whether the file to open is Temporary or Intermediate. Currently this is a simple Boolean
value. In the future this argument may be changed to specify the duration of an intermediate file. The calling sequence will not change.

After the Toolkit calls given in the example have been executed, the last 3 sections of the Process Control file will ook like this:

? | NTERMVEDI ATE | NPUT

[set env var PGS_| NTERMEDI ATE | NPUT for default |ocation]
701| pc1150283201028000395104034] | | | |

#

? | NTERMEDI ATE OUTPUT

[set env var PGS_| NTERMVEDI ATE_QUTPUT for default |ocation]
801| pc1150283201039509195162200] | | | |

#

? TEMPORARY | O

[set env var PGS_TEMPORARY_| O for default |ocation]

901| pc1150283201039509195162229] | | | |

#

? END

-- the toolkit has created file names for the new files and stored them in the PCF.

See the Notes section of tool PGS_PC_GetTempReferenceCom for an explanation of the form of the temporary file names.
All FORTRAN access modes are supported.

The 4th argument of PGS_IO_Gen_Temp_OpenF is for specifying record length.

In FORTRAN 77, this value must be at least 1 for direct access files; it is ignored for sequential files (as in the example).
In FORTRAN 90, this value must be at least 1 for direct access files. For sequential access, if this value is 0, the file is opened with a platform-
dependent record length; otherwise, it is opened with the specified record length.

Files which are opened with one of the direct access modes must have been created by FORTRAN direct access writes. That is, you cannot expect
to read a file with direct access reads if the file is sequential.

Temporary files are deleted automatically at PGE termination in the production environment. You may also delete them sooner by using tool
PGS_I0O_Gen_Temp_Delete.

A valid Process Control file (PCF) must have been constructed before using this tool. See section 4, "Process Control (PC) Tools".
The following is a complete listing of the access modes available (3rd argument in calling sequence):

PGS_IO_Gen_Temp_OpenF Access Modes

* K k% FWRAN****

Tool ki t node 'access=' "forn¥
PGSd_I| O_Gen_RSeqFrm Read Sequenti al Formatt ed
PGSd_I O_Gen_RSeqUnf Read Sequenti al Unformat t ed
PGSd_I| O Gen_RDirFrm Read Direct Format t ed
PGSd_I O_Gen_RDi r Unf Read Direct Unf ormat t ed

PGSd_I O Gen_WsegqFrm Wite Sequenti al For mat t ed
PGSd_I O_Gen_WseqUnf Wite Sequenti al Unf ormat t ed
PGSd_I O Gen_WDirFrm Wite Direct Format t ed
PGSd_I O_Gen_WDi r Unf Wite Direct Unformat t ed

PGSd_I O Gen_USeqFrm Update Sequenti al For mat t ed
PGSd_I| O_Gen_USeqUnf Update Sequenti al Unf ormat t ed
PGSd_I O Gen_UDirFrm Update Direct Format t ed
PGSd_| O_Gen_UDi r Unf Update Direct Unf or nat t ed

The foll owi ng nodes are avail able in FORTRAN 90 only:
PGSd_I| O Gen_ASeqFrm Append Sequenti al Format t ed
PGSd_I O_Gen_ASeqUnf Append Sequenti al Unformatted

ToolkitMnemonic used as 2nd argument in calling sequencemodeType of access allowed'access='Equivalent argument of ACCESS parameter in
FORTRAN OPEN function'form="Equivalent argument of FORM parameter in FORTRAN OPEN function

This function corresponds to two similar but separate source code files, one for FORTRAN 77, and one for FORTRAN 90. The FORTRAN 90 version
has all the functionality of the FORTRAN 77 version, plus support for (1) Append mode and (2) specification of record length for sequential files.
The installation script compiles one of these versions, based on which flavor of FORTRAN you specified at the time of Toolkit installation.

5. Memory Management (MEM) Tools
5.1 Memory Management (MEM) Tools Overview
The Memory Management group of tools allocates memory in your code.

There are two distinct sets of these tools: (1) the dynamic memory allocation tools, and (2) the shared memory allocation tools.

5.1.1 Dynamic Memory Tools

These tools are essentially wrappers on the native memory allocation functions, with the addition of Toolkit error handling. In C these native functions
include malloc, calloc, and free. The purpose of providing these wrappers is to enable the tracking of memory usage in the production environment.
(Note that currently there is no SDPS mechanism external to the Toolkit which does this.) In contrast to the shared memory tools, these tools are for
use within a single executable of your code. These functions use link-list utilities internally, in order to keep track of memory that has been allocated.
A brief description of each tool follows.

PGS_MEM_Malloc allocates an arbitrary number of bytes in memory.

PGS_MEM_Calloc allocates an arbitrary number of bytes in memory, and initializes them to zero.

PGS_MEM_Zero initializes an arbitrary block of memory to zero.

PGS_MEM_Realloc reallocates an arbitrary number of bytes to a variable which had previously been allocated memory by PGS_MEM_Malloc or
PGS_MEM_Calloc.

PGS_MEM_Free deallocates a given block of memory that was previously allocated by PGS_MEM_Malloc, PGS_MEM_Calloc, or
PGS_MEM_Realloc.

PGS_MEM_FreeAll deallocates all memory that was previously allocated by PGS_MEM_Malloc, PGS_MEM_Calloc, or PGS_MEM_Realloc within a
given executable.

Most of these functions return a pointer ptr to memory, which looks like

(void **) &ptr

in your code, in the argument to the Toolkit function. This form is necessary because the type of the variable is not known to the Toolkit function.
Please note that all addresses passed to these tools must be initialized first, if they have previously held allocated memory and were

subsequently freed. This is a general requirement on any re-use of pointers. If this is not done, very strange behavior may result. The tool examples
explicitly indicate what needs to be done.

5.1.2 Shared Memory Tools

These tools are for sharing memory between executables, within a single PGE.

You might want to share data between executables this way, in order to save the processing time that would ordinarily go to file 1/O, if you were writing
to and then reading from a file.

5.1.2.1 Preparing your shell script

This section is a step-by-step explanation of how to use shared memory tools.

A PGE may consist of one or more of your executables, bound by a shell script which you write. In order to use shared memory, you must have at
least two executables in the PGE. Here we use an example which consists of three executables, one for each of Level 1A, Level 1B, and Level 2

processing. Assume that a block of memory is to be shared among all 3 executables.

A simple PGE shell script which you build for use with the TK4 software might look like this:

File /usr/test/sanpl e_PGE
Sanpl e PCE shell script

| evel _la. exe

| evel _1b. exe

l evel _2. exe

In order to use shared memory at the SCF, you must either call your PGE script from PGS_PC_Shell.sh, like this
uni x% PGS_PC_Shel | . sh /usr/test/sanple_PGE 1111

or alternatively construct your own script using PGS_PC_InitCom and PGS_PC_TermCom, like this

File /usr/test/sanpl e_SCF_script
Sanpl e shell script for encapsul ating PGS at the SCF

PGS_PC_InitCom1 1

[usr/test/sanpl e_PCE
PGS _PC TernmCom 1 1

Ordinarily you would do it the first way.
What the PC software does is to prepare for the use of shared memory, among other things.
Note that only the PGE script /usr/test/sample_PGE would be delivered to the DAAC; PGS_PC_Shell.sh, PGS_PC_InitCom and PGS_PC_TermCom

are part of the DAAC environment, and are provided as part of the Toolkit only for purposes of your testing at the SCF. You needn't include calls to
them in your delivered code. Access to shared memory is automatically available at the DAAC.

5.1.2.2 Using Toolkit shared memory tools in your executables

In the first executable in which you use shared memory (here level_la.exe), you must call PGS_MEM_ShmCreate. This tool actually initializes your
shared memory block by allocating space for it in system memory. Only one user-specified memory block is allowed per PGE.

Also, this function is to be called only once per PGE. Subsequent calls return an error message.

In each executable in which you use shared memory (here level_la.exe, level_1b.exe and level_2.exe), you must do at least one thing:

Call PGS_MEM_ShmAttach. This function "attaches" the user shared memory block to your process. Essentially this means that the shared memory
is now available to you.

If you no longer need the shared memory within the current executable, then you may "detach" it. Do this by calling PGS_MEM_ShmDetach. Any data
you wrote to the memory block is still there after this call.

At the end of the current executable, the system automatically detaches the shared memory block anyway, so this call is optional. However, any
memory that the shared memory block uses is unavailable as dynamic memory during the current executable. Therefore it is desirable to call
PGS_MEM_ShmbDetach in order to make this memory available again to your process, if you no longer need the shared memory.

At the end of your PGE, the shared memory is deleted by use (at the SCF) of PGS_PC_Shell.sh or PGS_PC_TermCom.

There are system utilities, callable from the Unix command line, which monitor(ipcs) or remove(ipcrm) shared memory. However, these should not be
used as a substitute for the Toolkit functions, as this will only lead to problems at the DAAC.

Note: Toolkit shared memory functions are not POSIX compliant, since no POSIX standard yet exists for these types of functions. If and when a
POSIX standard for memory management is available, we may need to change the calling sequence for the Toolkit shared memory tools. However,
this will probably not be necessary.

The allowable maximum amount of shared memory is TBD, because of concerns about machine dependencies.
5.1.2.3 How the Toolkit itself uses shared memory

The lower-level modules of the Toolkit also use shared memory, to support your use of it, and to make the Toolkit itself more efficient. The Toolkit
(system) shared memory block is separate from your (user) shared memory block.

These two blocks of shared memory, yours and the Toolkit's, are the only two blocks of shared memory available.

5.1.3 Fortran, Cray and COTS Considerations

ANSI Fortran 77 does not support manipulation of pointer variables, so no Fortran 77 Toolkit Memory Management functions are available. Tools that
support memory management in Fortran 90 are currently under study.

The Cray YMPEL which we at ECS used to test tools on, does not support shared memory. Therefore the shared memory tools were not tested on the
Cray.

There is a problem with COTS tools that allocate dynamic memory, specifically IMSL. The problem is that there appears to be no way for the Toolkit
dynamic memory functions to track or free this memory. We are working on this.

5.2 Memory Management (MEM) Tool Descriptions

This section contains an alphabetical listing of the descriptions of the individual PGS_MEM_* tools.

5.2.1 PGS_MEM_Calloc

Short explanation of what it's for: Allocate memory in your process, initializing it to zero.
This function is in file: $PGSSRC/MEM/PGS_MEM.c

Examples:

Example assumes the file with handle fileHandle has already been opened.

C example:

#i ncl ude <PGS_MEM h>

float *data;

int n_itenms = 10;

int fsize;

PGSt _| O Gen_Fil eHandl e *fil eHandl e;
PGSt _SMF_st at us returnStatus;

/*

Begi n exanpl e

*/

/*
Initialize data pointer
(required if you previously freed menory associated with it;

see Not es)
Al ocate nenory, initializing it to zero
Read 5 itens of data froma file to partially fill array

*/

data = (float *)NULL;

fsize = sizeof (float);

returnStatus =

PGS_MEM Cal l oc((void **) &data, n_itens, fsize);
if(returnStatus == PGS_S SUCCESS)

fread(data, fsize, 5, fileHandle);

}

/*

array data now contains 5 floating point values, as read
fromfile fileHandl e, plus 5 zero val ues

*/

Fortran example:
Dynamic memory allocation is not allowed in Fortran 77. Fortran 90 tools are under study.
Notes:

In the example, the line

data = (float *)NULL;

is required before any call to PGS_MEM_Calloc, if you have previously used the same pointer data in a call to PGS_MEM_Free or
PGS_MEM_FreeAll. Behavior of your process is unpredictable if this line is not present. Effort will be made to check this at DAAC Integration
and Test.

The only difference between PGS_MEM_Malloc and PGS_MEM_Calloc is that PGS_MEM_Calloc initializes the variable to zero.

5.2.2 PGS_MEM_Free

Short explanation of what it's for: Free memory for a single variable.

This function is in file: $PGSSRC/MEM/PGS_MEM.c

Examples:

Example assumes the variable data has previously had memory allocated by either PGS_MEM_Malloc or PGS_MEM_Calloc.

C example:

#i ncl ude <PGS_MEM h>
float *data;
/*
Begi n exanpl e
*/
/*
Free menory
*/
PGS_MEM Free(data);
/*
Initialize data pointer
(required if you want to re-use this pointer in a later call
to PGS_MEM Mal | oc or PGS_MEM Cal |l oc; see Notes)
*/
data = (float *)NULL;

Fortran example:
Dynamic memory allocation is not allowed in Fortran 77. Fortran 90 tools are under study.
Notes:

The line

data = (float *)NULL;

is required before any call to PGS_MEM_Malloc or PGS_MEM_Calloc, if you have previously used the same pointer variable data in a call to
PGS_MEM_Free or PGS_MEM_FreeAll. Therefore it is prudent to do this right after you free the memory, just in case you forget later. Behavior of
your process is unpredictable if this line is not present.

Use of this function is optional. All dynamically allocated memory is automatically freed to the system at the termination of the current executable.

5.2.3 PGS_MEM_FreeAll

Short explanation of what it's for: Free all memory that you previously allocated dynamically.

This function is in file: $PGSSRC/MEM/PGS_MEM.c

Examples:

Example assumes that you have previously allocated some memory using PGS_MEM_Malloc and/or PGS_MEM_Calloc.

C example:

#i ncl ude <PGS_MEM h>

/*

Begi n exanpl e

*/

/*

Free all dynamically allocated nmenory
*/

PGS_MEM FreeAl | ();

/*

Al dynamcally allocated nenory within this exectuable has
now been freed

*/

Fortran example:
Dynamic memory allocation is not allowed in Fortran 77. Fortran 90 tools are under study.
Notes:

After you use this function, if you want to re-use any of the pointers to which you previously dynamically allocated memory, you must first re-initialize
them to zero, before any call to PGS_MEM_Malloc or PGS_MEM_Calloc. Behavior of your process is unpredictable if this is not done.

Use of this function is optional. All dynamically allocated memory is automatically freed to the system at the termination of the current executable.
5.2.4 PGS_MEM_Malloc

Short explanation of what it's for: Allocate memory in your process.

This function is in file: $PGSSRC/MEM/PGS_MEM.c

Examples:

Example assumes the file with handle fileHandle has already been opened.

C example:

#i ncl ude <PGS_MEM h>

float *data;

int n_itenms = 10;

int fsize;

PGSt _| O Gen_Fil eHandl e *fil eHandl e;
PGSt _SMF_st at us returnStatus;

/*

Begi n exanpl e

*/

/*
Initialize data pointer
(required if you previously freed menory associated with it;
see Not es)
Al l ocate nenory
Read 10 itens of data froma file to fill array
*/
data = (float *)NULL;
fsize = sizeof (float);
returnStatus =
PGS_MEM Mal | oc((void **) &data, n_itens*fsize);
if(returnStatus == PGS_S SUCCESS)

fread(data, fsize, n_itens, fileHandle);
}
/ *
array data now contains 10 floating point values, as read
fromfile fil eHandl e
*/
Fortran example:
Dynamic memory allocation is not allowed in Fortran 77. Fortran 90 tools are under study.
Notes:
In the example, the line
data = (float *)NULL;
is required before any call to PGS_MEM_Malloc, if you have previously used the same pointer data in a call to PGS_MEM_Free or
PGS_MEM_FreeAll. Behavior of your process is unpredictable if this line is not present. Effort will be made to check this at DAAC Integration

and Test.

The only difference between PGS_MEM_Malloc and PGS_MEM_Calloc is that PGS_MEM_Calloc initializes the variable to zero.

5.2.5 PGS_MEM_Realloc

Short explanation of what it's for: Re-allocate memory in your process, to a variable to which memory has been allocated previously. Useful for
extending arrays to a longer length than originally allocated.

This function is in file: $PGSSRC/MEM/PGS_MEM.c
Examples:

Example assumes that array variable data of dimension 10 has had memory allocated previously by PGS_MEM_Malloc or PGS_MEM_Calloc, as in
the examples given in those tool descriptions.

C example:

#i ncl ude <PGS_MEM h>
float *data;
int n_itenms = 20;

int fsize;
PGSt _SMF_st at us returnStat us;
/*

Begi n exanpl e
*/

fsize = sizeof (float);

returnStatus =

PGS_MEM Real | oc((void **) &data, n_itens*fsize);

/*

Array data now contains space for 20 floating point val ues

The first 10 values are the same as before; the second 10 val ues
cont ai n gar bage

*/

Fortran example:
Dynamic memory allocation is not allowed in Fortran 77. Fortran 90 tools are under study.

Notes:

Only pointer variables which have been used in a previous call to PGS_MEM_Malloc or PGS_MEM_Calloc should be used in a call to
PGS_MEM_Realloc. Do not use a pointer variable which has been freed and not re-initialized to zero; if you do, behavior of your process will be
unpredictable.

5.2.6 PGS_MEM_ShmAttach

Short explanation of what it's for:

Make previously allocated block of shared memory available to your process, so you can put data to it or get data from it.

This function is in file: $PGSSRC/MEM/PGS_MEML1.c

Examples:

This example is a continuation of the one used in PGS_MEM_ShmCreate.

Two examples are presented: in the first, we show how the shared memory is attached in your first executable levella.exe, then filled with data; In the
second, we attach it again in your second executable levellb.exe, then access the shared memory data. (This is also valid for subsequent
executables.)

The examples show one way of how you might share ephemeris data among your executables.

C example 1: First executable levella.exe

Example 1 assumes

(1) you have already processed your data enough (via Toolkit calls to ephemeris tools) to know the total number of ephemeris points npts;
(2) you have already called PGS_MEM_ShmCreate.

#i ncl ude <PGS_MEML. h>

/*

Structure for storing epheneris data

Menory assuned all ocated previously for structure el enents
*/

typdef struct

I ong *cl ockTi ne;

doubl e *xPosi tion;

doubl e *yPosition;

doubl e *zPosi tion;
} ephenttruct;

ephenttruct *epheneris;

int |size;
int dsize;

I ong sizell;
long sizeld;
long totsize;

/*

Previously determi ned total nunber of data points in structure
*/

| ong npts;

/*

Internediate arrays previously allocated and filled with data
*/

I ong *cl ockTi ne;

doubl e *xPosition;

doubl e *yPosition;

doubl e *zPosition;

PGSt _SMF_st atus returnStatus;

/*
Begi n exanpl e
*/

/*
First make the shared nmenory available to your process
*/

returnStatus = PGS_MEM ShmAttach((void **) &epheneris);

/*
Now copy data frominternediate arrays into shared nenory
*/

| size = sizeof (I ong);

dsi ze = si zeof (doubl e);
sizell = npts * |size;
sizeld = npts * dsize;

mencpy(epheneris->cl ockTi me, clockTine, sizell);
mencpy(epheneris->xPosition, xPosition, sizeld);
mencpy(epheneris->yPosition, yPosition, sizeld);
mencpy(epheneris->zPosition, zPosition, sizeld);

/*
Epheneris data is now saved in shared nenory

To nmake the shared menory avail able to another executabl e
later in the same PGE, call PGS_MEM ShnmAttach again

*/

C example 2: Second executable levellb.exe

Example 2 assumes that you have already filled the shared memory block with data, as in example 1.

#i ncl ude <PGS_MEML. h>
#i ncl ude <mat h. h>
#define REARTH 6.4E6 /* crude earth radius (m */
/*
Structure for storing epheneris data
Menory assuned al | ocated previously for structure el enents
*/
typdef struct
{
I ong *cl ockTi ne;
doubl e *xPosition;
doubl e *yPosi tion;
doubl e *zPosi tion;
} ephenftruct;
ephenttruct *epheneris;

doubl e al titude;
PGSt _SMF_st at us returnStatus;

/*

Begi n exanpl e

*/

/*

Make the shared nenory available to your process

*/

returnStatus = PGS_MEM ShmAttach((void **) &epheneris);

/*
Epheneris data is now avail able to your process

For exanple, you might calculate the altitude of the spacecraft:
*/
altitude = sqgrt(sqr(epheneris->xPosition) +
sqgr (epheneri s->yPosition) + sqr(epheneris->zPosition))
- REARTH;
Fortran exanpl e:
Dynamic memory allocation is not allowed in Fortran 77. Fortran 90 tools are under study.
Notes:
This function must be the third (or later) Toolkit shared memory function called in your code. PGS_MEM_ShmSysInit and PGS_MEM_ShmCre
ate must have been called first, before calling this function.

You call PGS_MEM_ShmAttach once in each executable where you need to access the shared memory data.

It is preferred that you use one single structure for all of your shared memory. This is how these tools were tested. It is possible that spurious results
may be obtained if you use more than one structure, or some other combination of data types.

Do not fill any variables in the shared memory block with data until after you call PGS_MEM_ShmAttach. Any data you put in these variables before
the call may be overwritten.

The example used in no way reflects how the actual Toolkit ephemeris tools format this data. This is a contrived example for purposes of illustration
only.

This function is not POSIX compliant, nor are any Toolkit shared memory functions.
5.2.7 PGS_MEM_ShmCreate

Short explanation of what it's for:

Used to Initiate the use of your shared memory block.

This function is in file: $PGSSRC/MEM/PGS_MEM1.c

Examples:

The example shows one way of how you might share ephemeris data among your executables. (Please note that this in no way reflects how the
actual Toolkit ephemeris tools format this data.)

The example assumes
(1) you have already processed your data enough (via Toolkit calls to ephemeris tools) to know the total number of ephemeris points npts;
(2) you have already called PGS_MEM_ShmSysinit.

C example:

#i ncl ude <PGS_MEML. h>

/*

Structure for storing epheneris data
*/

typdef struct

{

I ong *cl ockTi ne;

doubl e *xPosition;

doubl e *yPosi tion;

doubl e *zPosition;
} ephenttruct;

ephenftruct *epheneris;

int |size;
int dsize;
| ong sizell;

| ong sizeld;
long totsize;

/*

Previously deternined total number of data points in structure
*/

long npts;

PGSt _SMF_st at us returnStatus;

/*
Begi n exanpl e
*/

/*

First allocate menory for and copy over epheneris data from
internedi ate arrays

*/

| size = sizeof (I ong);

dsi ze = si zeof (doubl e);

epheneri s->cl ockTi ne
epheneri s- >xPosi tion
epheneri s->yPosi tion
epheneris->zPosition

long *)NULL;

doubl e *) NULL;
doubl e *) NULL;
doubl e *) NULL;

A~~~

returnStatus =
PGS_MEM Cal l oc((void **) &(epheneris->clockTine), npts,|size);
returnStatus =
PGS_MEM Cal | oc((void **) &(epheneris->xPosition), npts,dsize);
returnStatus =
PGS_MEM Cal | oc((void **) &(ephemneris->yPosition), npts,dsize);
returnStatus =
PGS_MEM Cal oc((void **) &(ephereris->zPosition), npts,dsize);

/*
Cal cul ate total size of shared nenory bl ock
Reserve space for your shared menory bl ock
*/

sizell = npts * |size;

sizeld = npts * dsize;

totsize = sizeof (ephenBStruct) + sizell + 3*sizeld;
returnStatus = PGS_MEM ShntCreate(totsize);

/ *

Space has now been reserved in shared nmenory for your structure
You are now ready to call PGS_MEM ShmAttach to nmake the shared
menory available to your process

*/

Fortran example:

Dynamic memory allocation is not allowed in Fortran 77. Fortran 90 tools are under study.
Notes:

This function must be the second Toolkit shared memory function called in your code. You only need to call it once per PGE; subsequent calls
are ignored.

PGS_MEM_ShmSyslInit must have been called first, before calling this function.

After you call this function, you must call PGS_MEM_ShmAttach to actually make the shared memory available in your code, in each executable
where you want to use it.

What this function actually does is reserve a given amount of space in system memory for your shared memory block. You cannot make this amount
bigger later; you must reserve it all at once by using this function.

It is preferred that you use one single structure for all of your shared memory. This is how these tools were tested. It is possible that spurious results
may be obtained if you use more than one structure, or some other combination of data types.

Do not fill any variables in the shared memory block with data until after you call PGS_MEM_ShmAttach. Any data you put in these variables before
the call may be overwritten.

This function initializes the use of your shared memory block, in contrast to PGS_MEM_ShmSysinit, which initializes the shared memory block that the
Toolkit itself uses.

This function is not POSIX compliant, nor are any Toolkit shared memory functions.
5.2.8 PGS_MEM_ShmDetach

Short explanation of what it's for:

Optionally releases shared memory block, so the current executable can no longer access it.
This function is in file: $PGSSRC/MEM/PGS_MEML1.c

Examples:

C example

#i ncl ude <PGS_MEML. h>

PGS_MEM ShnDet ach() ;

/*
Shared nenory data is no longer available to this executable

To nake the shared menory avail able to another executabl e

later in the same PGE, call PGS_MEM ShmAttach again

*

/

Fortran example:

Dynamic memory allocation is not allowed in Fortran 77. Fortran 90 tools are under study.

Notes:

The shared memory data is not erased by this function, it is simply no longer available to your current executable. To make it available again in this or
a subsequent executable in this same PGE, call PGS_MEM_ShmAttach again.

Use of this function is optional. The system automatically detaches the shared memory block at the end of each executable.

However, if you are no longer using the shared memory block in the current executable, it is a good idea to detach it, so that the memory is available
as dynamic memory to your process. You may detach and re-attach the shared memory block as much as you like.

This function is not POSIX compliant, nor are any Toolkit shared memory functions.

5.2.9 PGS _MEM_Zero

Short explanation of what it's for: Sets a given amount of memory to zero.

This function is in file: $PGSSRC/MEM/PGS_MEM.c

Examples:

Example assumes that variable data has had memory allocated previously by PGS_MEM_Malloc, PGS_MEM_Calloc, or PGS_MEM_Realloc, as in
the examples given in those tool descriptions.

C example:

#i ncl ude <PGS_MEM h>
float *data;
int n_items = 10;

int fsize;

/*

Begi n exanpl e
*/

fsize = sizeof (float);

PGS_MEM Zero(data, n_itens*fsize);

/*

array data now contains zero in all 10 positions
*/

Fortran example:

Dynamic memory allocation is not allowed in Fortran 77. Fortran 90 tools are under study.
Notes:

You might use this function after using PGS_MEM_Realloc, to set the re-allocated memory to zero; or you just might want to reinitialize an array for re-
use.

Warning: Be careful not to zero out past the ends of the bounds of an array. This would cause some other variable to be set to zero, giving
unpredictable results in your program.

6. Metadata (MET) Tools

6.1 Metadata (MET) Tools Overview
6.1.1 Introduction

This set of tools is designed to manage the metadata inserted into each EOS product; i.e. the per granule metadata. The user is the science PGE
which initiates the tools in a specified sequence, to obtain and marshal metadata values.

Within ECS the term "Metadata" relates to all information of a descriptive nature which is associated with the product or dataset. Metadata of
importance to production software developers are:

® Data elements commonly found in a product file header, such as temporal or spatial coverage
® documentation that accompanies the production algorithm software
® data origin information

In order to establish standards for the EOS project, a minimal set of parameters has been made mandatory to accompany standard products. This set
is detailed in the ECS document DID 311.

Listed below are mandatory metadata parameters:

Longname collection (dataset) name

Spatial_coverage (group) one of spatial coverage options
Temporal_coverage (group) one of temporal coverage options
UR_OF_ECS_product_input ID of input product used to generate this product
Quality_rating (group) all of group

reprocessing_status (group) 2 attributes denoting status

Other Optional parameters:

® size_MB_ECS_data_granule size of product
® UR_of_ancillary_input_granules ID of ancillary product used to generate this product
® UR_of_Orbit_paramters_granule ID of orbit parameters file used to generate this product

Further information describing the attributes can be found in appendix J of the Toolkit Users Guide

The establishment of metadata values for ECS produced products will be important for the services which will be applied to the data upon request by
users. This includes, for example, subsetting by geolocation. Note that the term 'users' could mean human or the production system itself.

6.1.2 Accessing Metadata

In order to manage the metadata in the ECS, and to avoid future changes in the toolkit software interface affecting user code, we have designed the
metadata access to be file driven. The Toolkit metadata tools will rely on a Metadata Configuration File (MCF). The purpose of the MCF is to provide a
structured medium which acts as a repository for the attributes which will be attached to data products. A template for constructing an MCF is provided
with Toolkit 5 (Aug. 95), to be edited by the instrument software development teams. The template, as presented in the example consists of two
sections or GROUPS, namely granule and product specific. The attributes in the granule GROUP, represent core metadata. The attributes in the
product specific GROUP are to be established at the discretion of each instrument team. It is expected that one MCF per data product will be specified.

Note: Any new additions to the MCF, must also be mirrored in the data dictionary.

An example of an MCF is presented below. The MCF is provided to each Instrument Team as a template. The MCF has been designed around the
Object Development Language (ODL) libraries, which access data in a Group, Object and Attribute context. Each meaningful collection of data,
described by a name is known as an OBJECT. Individual pieces of information about the form and content of the object are called ATTRIBUTES.
When it is convenient to group together a number of objects under one label, a GROUP is constructed. For more information on ODL and
documentation, please press icon.

blocked URL

ODL enables the metadata tools to access data held within the MCF, and to output values to the MCF. Data are held in a PARAMETER = VALUE
(PVL) format. For information on PVL please perform a search using the keyword PVL at the following site, please press icon.

blocked URL
Below is an example of PVL syntax from the Metadata Configuration File (MCF).

GROUP = GRANULEDATAOBJECT = LongNameData_Location = "MCF"Mandatory = "TRUE"Value = "MODIS_SST"END_OBJECT =
LongNameEND_GROUP = GRANULEDATA

The parameter, Data Location may be to any of the following:

https://newsroom.gsfc.nasa.gov/sdptoolkit/primer/doc.html#UsersGuide
https://newsroom.gsfc.nasa.gov/sdptoolkit/primer/pds.gif
https://newsroom.gsfc.nasa.gov/sdptoolkit/primer/hand.gif

® Data Location = PCF. Values are obtained automatically from the Process Control File

® Data Location = MCF. Values are preset during the creation of the MCF from the template by the Instrument Team.

® Data Location = PGE. Values are set by the PGE.
If the Data_Location field is filled in with the value "MCF", there will always be a Value = field. With Data_Location = PGE or PCF , there is no value
field; this is added when the MCF is written to the product. The Mandatory field denotes whether or not the attribute is mandatory. If it is mandatory
and it is not set by the PGE a warning message is returned. Strict adherence to the format and structure of the MCF is advisable, to prevent any
needless or spurious errors.
Values written to the MCF while it is held in memory after initialisation are checked against a data dictionary. The data dictionary is supplied with the
toolkit routines at present. The data dictionary provided with the toolkit is in PVL/ODL format. It contains data descriptions relevant to all attribute to be
found in the granule specific group. Any additional information pertinent to product specific Metadata must be added by the Instrument team. At
present, there is no "keeper" of the data dictionary. In the future, the data dictionary as well as the MCF will be prepared by the Data Server.
A scenario for Tool usage can be seen below:
STEP 1 - Initialize MCF
PGS_MET_nit(filelogical, metadata handles)
STEP 2 - Extract Value from file in PCF

PGS_MET_GetPCAttr(product file id, product version number, name of hdf attribute containing metadata, metadata parameter, returned metadata
parameter value)

The output will be the value of the metadata attribute from the HDF metadata attribute or header. e.g. Obtain the QA_%_of_MissingData from an input
product.

STEP 3 - Write the value extracted to the MCF in memory

PGS_MET_SetAttr(metadata group name, name.class of parameter, value to be inserted)

This will locate the group in the MCF, then the object name, and class if this is specified, and attach a new attribute to the object, which will hold the
value to be associated with that attribute. The value will also be checked against the data dictionary; if the value is within the specified range, and of
the correct type, it will be associated. (i.e. held in memory location)

STEP 4 - A value already held in the MCF in memory is needed to calculate a new value for a product specific object.

PGS_MET_GetSetAttr(metadata group name, name.class of parameter, value to be passed back)

STEP 5 - In order to calculate this new value, information is also needed from the Configuration parameters set up in the Process Control
File.

PGS_MET_GetConfigData(name of parameter, value to be passed back)
This will search the Process control file, and return the value back to the algorithm.

STEP 6 - The PGE has used the two inputs to calculate a new value for one of the MCF objects, and wants to write it to the MCF held in
memory.

PGS_MET_SetAttr(metadata group name, name.class of parameter, value to be inserted)

STEP 7 - The PGE has finished setting all the values which are mandatory in the MCF, but there is still some relevant granule information
which the PGE wants to add to the MCF. The PGE accomplishes this by adding this information to the PRODUCT_SPECIFIC_METADATA
group. Located within this group lie the object names the instrument team has already specified as being product specific.

PGS_MET_SetAttr(product specific metadata group name, name.class of parameter, value to be inserted)

STEP 8 - After multiple calls to PGS_MET_SetAttr the MCF in memory is now complete, all the granule specific metadata have been set, and
the relevant product specific metadata have been set. The PGE now writes the metadata out as an HDF attribute attached to the product.

PGS_MET_Write(metadata group to be written out, HDF file attribute name, HDF file ID)

6.2 Metadata (MET) Tool Descriptions

The calling sequences for the PGSTK Metadata Tools can be found in the following sections. In order to utilize the tools to their optimum capacity,
they must be called in a specified sequence within the algorithm code; i.e., PGS_MET_Init()once for each physical MCF), then PGS_MET_SetAttr() (0-
ntimes), then PGS_MET_Write() (once for each HDF attribute). PGS_MET_GetSetAttr(), PGS_MET_GetPCAttr() and PGS_MET_GetConfig() can be
called any number of times at any point after Init and before PGS_MET_Write().

6.2.1 PGS_MET_Init

The first step in reading from or writing to the MCF is with initialization. The contents of the MCF are read into memory and any values which are to be
set automatically from the PCF (i.e. where location = PCF), are located and inserted. Any values preset in the MCF(Data_Location = MCF) are
checked against the data dictionary. The MCF is also checked to see if it is in the correct ODL syntactical format.

For calling sequences go to PGS_MET_Init.

6.2.2 PGS_MET_SetAttr

The PGE can use the PGS_MET_SetAttr tool to set values already known to the algorithm, or to set those values which are available from the
Process Control File (PCF). This function also acts to check out the validity of the value being set. The value is checked against the data dictionary for
type and whether it falls within a predefined range.

For calling sequences go to PGS_MET_SetAttr.
6.2.3 PGS_MET_GetSetAttr

When the PGE needs to find and use a value from the MCF after it has been intialized, PGS_MET_GetSetAttr is used. This tool is used to get values
pre - set by the Instrument Team, i.e. where data_Location is set to MCF.

For calling sequences go to PGS_MET_GetSetAttr.
6.2.4 PGS_MET_GetPCALttr

The first method which enables the algorithm (PGE) to extract metadata values from the PCF is by using PGS_MET_GetPCAttr. This call retrieves
parameters in the PCF which are either located as an HDF attribute on product files, or can be found in a separate ASCII file.

NOTE: These ASCII files must be in flat ODL format. The HDF attributes are guaranteed to be in this format if they have been written out to
the file using the PGS_MET_Write function.

For calling sequences go to PGS_MET_GetPCAttr.

6.2.5 PGS_MET_GetConfig

The second method which enables the algorithm (PGE) to extract metadata values from the PCF is by using PGS_MET_GetConfigData. This call
enables the user to obtain the configuration data parameters held within the PCF.

For calling sequences go to PGS_MET_GetConfig.
6.2.6 PGS_MET_Write

Once the algorithm (PGE) has finished retrieving and setting all the values in the mandatory section of the MCF, and the specific attributes relevant to
that specific product, the final stage is to write the granule and product specific values to the product. PGS_MET_Write writes the values out to an
HDF file as an HDF 'attribute'. This tool can write certain groups within the MCF to various locations within the HDF file, e.g. the granule group can be
written to the HDF file as a global attribute, and if a product specific group is present in the MCF it may be written as a local attribute.

NOTE: To see examples of the format of the resulting metadata written to the product, consult Appendix J of the Toolkit Users Guide.

For calling sequences go to PGS_MET_Write.
6.2.7 PGS_MET_Remove

This tool frees up the memory allocated by the ODL libraries. The representation of the MCF data dictionary will be removed rom memory.

For calling sequences go to PGS_MET_Remove.

7. Ephemeris and Attitude Data Access (EPH) Tools
7.1 Ephemeris and Attitude Data Access (EPH) Tools Overview

This section describes how to access spacecraft ephemeris and attitude data through the Toolkit.

7.1.1 Introduction

The source of ECS orbit and attitude data is platform dependent. It may include Flight Dynamics Facility (FDF) files and/or Level 0 data from platform
ancillary packets in some combination of primary and backup orbit and attitude data. At this writing (11/94), neither simulated Level O ephemeris data
nor simulated FDF files are available.

In the interim, it is desired to have a means of generating simple ephemeris and attitude data from known orbital elements, for use at the SCF. To this
end we have produced an orbit and attitude simulator, which produces files in a format that may be read by functions in the EPH Toolkit group; it
works for TRMM, EOS AM and EOS PM platforms. While while these functions currently reads only files generated by the simulator, the intention is
that they will read real ephemeris files in the future.

The format and mechanism of how orbit and attitude data become available to the Toolkit at the DAAC is TBD. One possibility is that regardless of
source or platform the data will be reformatted to a single format, e.g., the one we have defined for the simulator output. To this end, a new ECS
requirement has been generated for preprocessing all ephemeris data to a common format. Whatever the decision on this mechanism, every effort will
be made to keep the Toolkit function calling sequence unchanged.

This section of the Primer consists of two parts: (1) description of how to construct a set of simulated ephemeris files for your use at the SCF, and (2)
description of the Toolkit function you use in your code to read this file.

For specifics about orbit and attitude data from FDF and platform ancillary packets, see Level 0 Data Issues for the ECS Project, sec. 5.

7.1.2 Preparing a Simulated Ephemeris/Attitude File Set

This section shows how to generate a set of files that the Toolkit ephemeris and attitude tools can read. These files are intended for testing software
functionality and not for mission planning.

7.1.2.1 Using the Toolkit simulator to create an ephemeris/attitude file set

The program that generates this file is an interactive one. We give a sample session on how it works.
In the example, data that you type is given like this;

data generated by the programis given like this.

The line

->

means that you typed a carriage return, so using the default value.

uni X% is the Unix system prompt.

SAMPLE SESSION:

uni x% $PGSBIN/orbsim

Kok kk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

ANNANNNNNNNNNNNNN
ANANANANANNAANNANNNNN

=ECS=

* *
* *
* *
* ANNANNNNNNNNNNNNAN %
* *
* *
* *
khkkhkhkkhkhkhkhkkhkkhkkkkkhkkkk
ECS SPACECRAFT ORBI T SI MULATOR
Enter <return> at a pronpt to select the default
option (indicated by []). Enter 'q at any pronpt
to quit.
enter spacecraft ID (TRW EOCS_AM EGCS PM:

-->TRMM

enter start and stop dates in CCSDS ASCI| (format A or B)
A) YYYY- MM DD

B) YYYY-DDD

enter start date:

-->1998-06-30

enter stop date [1998-06-30]:

-->
enter tine interval in seconds [60.000000 sec]:
-->

start day: 1998- 06- 30

stop day: 1998- 06- 30

tine interval: 60.000000 seconds

This will create approximately 0.18 MB of data.
accept ([yl/n)?

-->

You may introduce randomnoise in the attitude and attitude
rates. This noise will be deviations fromthe nom nal val ues

of zero for these quantities (i.e. spacecraft reference frame
identical to orbital reference frane). The nunber entered will
be the maxi mum deviation (+/-) fromthe nom nal values. The sanme
value will be used for all the conponents of a particular
quantity. Enter 'N at the first pronpt for no noise at all.

O herwi se entering zero for a particular quantity will preclude
noise in that state. The default case is no noise.

Enter noise level in arcseconds (0.00-999.99).

enter attitude noise level [N:

-->50

enter attitude rate noise level [50.00]:
-->

By default this programwill install the files it generates in: /pgs_hone/lib/database/ EPH.

install files in [/pgs_hone/lib/database/ EPH:
-

creating file: /pgs_home/lib/database/ EPH TRMM 1998- 06- 30. eph
creating file: /pgs_hone/lib/database/ EPH TRVMM 1998- 06- 30. att

Done. Generate another set of epheneris files (y/[n]):
-->

uni X%
The result is that you now have a set of files named:

/ pgs_hone/ |'i b/ dat abase/ EPH TRMM 1998- 06- 30. at t
/ pgs_home/ |'i b/ dat abase/ EPH TRMM 1998- 06- 30. eph

where pgs_home is the directory where you installed the Toolkit. These files contains ephemeris and attitude data (respectively) for the TRMM
spacecraft, for June 30, 1998, spaced at intervals of 60.0 sec, with attitude noise amplitude of 50 arcsec and attitude rate noise amplitude 50 arcsec
/sec. The total size of the files is about 0.18 MB.

If you had put a different stop date, the simulator would have created a separate set of ephemeris/attitude files for each day requested.
7.1.2.2 Creating your own ephemeris and attitude data file

You may also create your own files. They must be in the same format as the simulator output for the Toolkit functions to read them.

There is a Toolkit utility you can use, that checks that the files you construct are consistent with the formats the Toolkit ephemeris and attitude access
tools expect as input. It is called chkeph. To run it, just give it one or more filenames:

unix% cd /pgs_homel/lib/database/EPH
unix% $PGSBIN/chkeph TRMM_AM_1998-06-30.att TRMM_AM_1998-06-30.eph

TRVM 1998- 06-30. at t:
spacecraft ID: 4444 (TRW)
start tinme: 173318405. 000000 (1998-06-30T00: 00: 00. 000000)
stop time: 173404745. 000000 (1998-06-30T23:59: 00. 000000)
time interval: 60.000000
total records: 1440
checking record: 0001440 ... K

TRVM 1998- 06- 30. eph:
spacecraft ID: 4444 (TRW)
start tinme: 173318405. 000000 (1998-06-30T00: 00: 00. 000000)
stop time: 173404745. 000000 (1998-06-30T23:59: 00. 000000)
time interval: 60.000000
total records: 1440
checking record: 0001440 ... K

7.1.2.3 Adding ephemeris and attitude data file sets to the PCF

In the SCF environment users must populate the PCF with appropriate ephemeris and attitude data files themselves. No tools that require access to
spacecraft ephemeris data will function without these ephemeris and attitude files. An ephemeris file and an attitude file must be provided for any time
during which processing will be requested.

The PCF file provided with the Toolkit contains the Logical IDs which have been reserved for the ephemeris and attitude data files. There is one
Logical ID for each type of data and the appropriate Logical ID MUST be used for each set of ephemeris and attitude files. Replace the dummy values
in the PCF with the actual location of the ephemeris and attitude files to be used. Use the given ephemeris file Logical ID for all ephemeris data files
and the given attitude file Logical ID for all attitude files. To include multiple files of either type use file versioning. The order of the files is not
important, the ephemeris and attitude access tool will sort the files before attempting to access them (WARNING: providing files with overlapping start
/stop times may produce unexpected results).

The unconfigured ephemeris and attitude Logical ID entries in the PCF look as follows (respectively):

10501| | NSERT_EPHEMERI S_FI LES HERE| | | || 1
[

|
10502| | NSERT_ATTI TUDE_FI LES_HERE] | 1
The configured entries should look something like this:

10501| TRVM 1998- 06- 30. eph| ~/ dat abase/ sun5/ EPH| | | | 1
10502| TRMM 1998- 06- 30. att | ~/ dat abase/ sun5/ EPH| | | | 1

When including multiple ephemeris/attitude data sets, use file versioning:

10501| TRVM 1998- 06- 30. eph| ~/ dat abase/ sun5/ EPH| | | | 3
10501| TRMM _1998- 07- 01. eph| ~/ dat abase/ sun5/ EPH| | | | 2
10501| TRVWM _1998- 07- 02. eph| ~/ dat abase/ sun5/ EPH| | | | 1
10502| TRVWM _1998- 06- 30. att | ~/ dat abase/ sun5/ EPH| | | | 3
10502] TRMM 1998- 07-01. att | ~/ dat abase/ sun5/ EPH| | | | 2
10502| TRWM _1998-07- 02. att | ~/ dat abase/ sun5/ EPH| | | | 1

See sec. 4.1.2, Constructing your Process Control file, for information about PCF entries.

7.2 Ephemeris and Attitude Data Access (EPH) Tool Descriptions

This section contains an alphabetical listing of the descriptions of the individual PGS_EPH_* tools.
7.2.1 PGS_EPH_EphemaAittit

Short explanation of what it's for: Get spacecraft ephemeris (ECI position and velocity) and attitude (Euler angles, rates, and spacecraft to ECI
quaternion) from ephemeris/attitude file.

This function is in file: $PGSSRC/EPH/PGS_EPH_EphemAittit.c
Examples:
Examples get both ephemeris and attitude for 2 times, at a one second interval.

C example:

#i ncl ude <PGS_EPH. h>

PGSt _t ag scTag;

PGSt _i nt eger nunVal ues;

char asci i UTC_A start[28];
PGSt _doubl e tine_offset[2];

PGSt _bool ean get _epheneris_fl ag;
PGSt _bool ean get _attitude_fl ag;
PGSt _i nt eger qual i tyFl ags[2][2];

PGSt _doubl e positionEC [2][3];
PGSt _doubl e vel ocityECI[2][3];
PGSt _doubl e ypr[2][3];

PGSt _doubl e yprRate[2] [3];
PGSt _doubl e attitQuat[2][4];
PGSt _SMF_st atus returnStatus;

/*

Begi n exanpl e

*/

scTag = PGSd_TRWM /* PGSd_EOS_AM PGSd_ECS_PM al so al | owed */
nunval ues = 2;
strcpy(ascii UTC_A start, "1998-06-30T10: 51: 28. 320000Z");

time_offset[0]
time_of fset[1]

0.0; /* 1998-06-30T10: 51: 28. 320000Z */
1.0; /* 1998-06-30T10: 51: 29. 320000Z */

get _epheneris_fl ag=PGS_TRUE; / *PGS_FALSE i f don't want epheneris*/
get _attitude_flag=PGS_TRUE; /*PGS_FALSE if don't want attitude*/

returnStatus = PGS_EPH EphemAttit (
scTag, nunVal ues, asciiUTC A start, tinme_offset,
get _epheneris_flag, get_attitude_flag, qualityFl ags,
posi ti onECl, vel ocityECH, ypr, yprRate,
attitQuat);

/*
Results: the follow ng variables now are filled:

ascii UTC_A output[0] "1998-06-30T10: 51: 28. 320000Z" 1st UTC tinme

positionECI[0][0] 1413531.574 ECl x position (m
positionECI[0][1] -6005427.214 ECI y position (m
positionECI[0][2] -2693615.671 ECl z position (m

vel ocityECI[0][0] 7005.698 ECI x velocity (nis)
velocityECI[0][1] 232.091 ECl y velocity (nls)
velocityECI[0][2] 3166.378 EC z velocity (ns)

ypr[0][0] -0.001519 1st Euler angle (rad)
ypr[0][1] 0.000580 2nd Eul er angle (rad)
ypr[0][2] -0.005627 3rd Eul er angle (rad)

yprRate[0][0] 0.000967 1st Euler angle rate (rad/s)
yprRate[0][1] 0.009510 2nd Euler angle rate (rad/s)
yprRate[0][2] 0.001334 3rd Euler angle rate (rad/s)

attitQuat[0][0] 0.830083 1st conponent attitude quaternion
attitQuat[0][1] -0.516056 2nd conponent attitude quaternion
attitQuat[0][2] -0.186537 3rd conponent attitude quaternion
attitQuat[0][3] -0.099258 4th conponent attitude quaternion

ascii UTC_A output[1] "1998-06-30T10:51: 29. 320000Z" 2nd UTC time

positionECI[1][0] 1420536.347 ECl x position (m
positionECI[1][1] -6005191.205 ECI y position (m
positionECI[1][2] -2690447.532 ECl z position (m
velocityECI[1][0] 7003.845 ECI x velocity (m's)
veloci tyECI [1][1] 239.928 ECl y velocity (nis)
velocityECI[1][2] 3169.900 ECl z velocity (m's)
ypr[1][0] -0.001597 1st Euler angle (rad)
ypr[1][1] 0.000502 2nd Eul er angle (rad)
ypr[1][2] -0.005705 3rd Eul er angle (rad)

yprRate[1][0] 0.001006 1st Euler angle rate (rad/s)
yprRate[1][1] 0.009549 2nd Euler angle rate (rad/s)
yprRate[1][2] -0.005705 3rd Euler angle rate (rad/s)

attitQuat[1][0] 0.829945 1st conponent attitude quaternion
attitQuat[1][1] -0.516141 2nd conponent attitude quaternion
attitQuat[1][2] -0.187061 3rd conponent attitude quaternion
attitQuat[1][3] -0.098985 4th conponent attitude quaternion
*/

FORTRAN example:

I MPLI CI T NONE
I NCLUDE ' PGS_TD. f'

| NCLUDE ' PGS_TD 3. f*
I NCLUDE ' PGS_EPH 5. f'
| NCLUDE ' PGS_MEM 7. f'
| NCLUDE ' PGS_SMF. f'

I NTEGER pgs_eph_ephenattit
| NTEGER sctag

I NTEGER nunval ues
CHARACTER* 27 asciiutc_a start
DOUBLE tine_offset(2)

| NTEGER get _epheneris_flag
| NTEGER get _attitude_flag
| NTEGER qual i tyflags(2)(2)
DOUBLE posi tioneci (2, 3)
DOUBLE vel oci tyeci (2, 3)
DOUBLE ypr(2,3)

DOUBLE yprrate(2,3)
DOUBLE attitquat(2,4)

| NTEGER returnstatus

! Begin exanple

scTag = PGSd_TRW ! PGSd_EOS_AM PGSd_EOS PM al so al | owed
nunval ues = 2

ascii UTC_A start = '1998-06-30T10: 51: 28. 320000Z'

time_offset(1)

0.0; ! 1998-06-30T10: 51: 28. 320000Z
tine_offset(2) 1.0

;1 1998-06-30T10: 51: 29. 320000Z

get _epheneris_fl ag=PGS_TRUE ! PGS_FALSE if don't want eph
get _attitude_flag=PGS TRUE !PGS FALSE if don't want att

returnStatus = pgs_eph_ephenattit(
sctag, numval ues, asciiutc_a_start, utc_offset,
get _epheneris_flag, get_attitude_flag,
qual ityfl ags, positioneci, velocityeci,
ypr, yprrate, attitquat)

https://newsroom.gsfc.nasa.gov/sdptoolkit/primer/time_notes.html#ASCII

Resul t's:

asciiutc_a_output(1l) '1998-06-30T10: 51: 28. 3200002

posi tioneci (1) (1)
posi tioneci (1) (2)
posi tioneci (1) (3)

the follow ng variables now are filled:

1413531. 574 ECl x position (m
-6005427. 214 ECl y position (m
-2693615.671 ECl z position (m

vel ocityeci(1)(1) 7005.698 ECI x velocity (m's)
vel ocityeci (1)(2) 232.091 ECl y velocity (nis)
vel ocityeci (1)(3) 3166.378 ECI z velocity (m's)

-0.001519 1st
0. 000580 2nd
-0. 005627 3rd

ypr(1)(1)
ypr(1)(2)
ypr(1)(3)

Eul er angle (rad)
Eul er angle (rad)
Eul er angle (rad)

1st UTC tinme

I yprrate(1) (1)
I yprrate(1l)(2)
! yprrate(1)(3)

0. 000967
0. 009510
0. 001334

1st Eul er
2nd Eul er
3rd Eul er

angl e
angl e
angl e

rate (rad/s)
rate (rad/s)
rate (rad/s)

! attitquat(1l) (1) 0.830083 1st conponent attitude quaternion
! attitquat(1l)(2) -0.516056 2nd conponent attitude quaternion
! attitquat(1l)(3) -0.186537 3rd conponent attitude quaternion
| attitquat(1l)(4) -0.099258 4th conponent attitude quaternion

! asciiutc_a_output(1) '1998-06-30T10:51: 29. 320000Z' 2nd UTC ti ne
| positioneci(2)(1)
! positioneci(2)(2)
I positioneci(2)(3)

1420536. 347 ECl x position (m
-6005191. 205 ECl y position (m
-2690447.532 ECl z position (m

7003.
239.
3169.

I velocityeci (2)(1)
I vel ocityeci (2)(2)
I vel ocityeci (2)(3)

Pypr(2)(1)
P ypr(2)(2)
P ypr(2)(3)

! yprrate(2)(1)
I yprrate(2)(2)
I yprrate(2)(3)

845 EClI x velocity (nis)
928 ECl y velocity (nis)
900 ECl z velocity (nis)

-0.001597 1st
0. 000502 2nd
-0. 005705 3rd

Eul er angle (rad)
Eul er angle (rad)
Eul er angle (rad)

0. 001006
0. 009549
-0. 005705

1st Eul er angle
2nd Eul er angle
3rd Euler angle

rate (rad/s)
rate (rad/s)
rate (rad/s)

| attitquat(2)(1l) 0.829945 1st conponent attitude quaternion
| attitquat(2)(2) -0.516141 2nd conponent attitude quaternion
I attitquat(2)(3) -0.187061 3rd conponent attitude quaternion
| attitquat(2)(4) -0.098985 4th conponent attitude quaternion

Notes:

The 3 output Euler angles correspond to yaw, pitch and roll; the order of these values in the ypr and yprRate output is platform dependent.
Files:

This tool accesses the following files:

® leap seconds
® spacecraft ephemeris/attitude

The physical references to these files must be defined in the Process Control File (PCF).

The PCF template supplied with the Toolkit, SPGSRUN/$BRAND/PCF.relA contains the reference for the leap seconds file, if you are using a PCF
derived from that template, you need not do anything extra, to enable access to that file.

To access spacecraft ephemeris files in the SCF environment, you must add the appropriate files to the PCF. These files must be created by you for
testing purposes at the SCF. Spacecraft ephemeris files must be in the ECS ephemeris file format. Simulated files may be prepared through use of the
orbsim utility; (sec. 7.1.2.1); alternatively, you may prepare them yourself (sec. 7.1.2.2).

See sec. 3.1.2, Constructing your Process Control file, for information about PCF entries.

7.2.2 PGS_EPH_GetEphMet

Short explanation of what it's for: Get metadata associated with spacecraft ephemeris data.

This function is in file: $PGSSRC/EPH/PGS_EPH_GetEphMet.c

Examples:

Examples retrieve orbit metadata for a 100 minute time span.

C example:

#i ncl ude <PGS_EPH. h>

#define MAX_ORBI TS 5 /* maxi mum nunber of orbits expected */
#define NUM_ PO NTS 100 /* nunber of epheneris data points */

PGSt _doubl e of f set s[NUM_PQO NTS] ;
PGSt _doubl e orbi t DownLongi t ude[MAX_ORBI TS] ;

PGSt _i nteger nunOrbits;

char asci i urq 28] ;
char or bi t AscendTi me[MAX_ORBI TS] [28] ;
char or bi t DescendTi me[MAX_ORBI TS] [28] ;

/* initialize asciiUTC and offsets array with the times for
actual epheneris records that will be processed (i.e. by
sone other tool) */

strcpy(ascii UTC, "1998- 02- 03T19: 23: 45. 123");
for (i=0;i<NUM PO NTS;i++)

offsets[i] = (PGSt_double) i*60.0;

/* get the ephemeris netadata associated with these tinmes */

returnStatus = PGS_EPH_Get EphMet (PGSd_ECS_AM NUM PO NTS, asci i UTC,
of f sets, &wunOr bi t s, or bi t AscendTi ne,
or bi t DescendTi e, or bi t DownLongi t ude) ;

if (returnStatus != PGS_S SUCCESS)
{

** do sone error handling ***

}

/* numOrbits will now contain the nunber of orbits spanned by the
data set (as defined by ascii UTC and EPHEM ARRAY_SI ZE of f sets).
orbitAscendTinme will contain nunOrbits ASCII UTC tines
representing the time of northward equator crossing of the
spacecraft for each respective orbit. orbitDescendTine will
simlarly contain the southward equator crossing tinmes and
or bi t DownLongi tude will contain the southward equator crossing
| ongi tudes */

FORTRAN example:

inmplicit none

include ' PGS_EPH 5. f'
include 'PGS_TD. f'
include 'PGS_TD 3. f"
include ' PGS_SMF. f*'

integer max_orbits/5/ ! maxi mum nunber of orbits expected
i nteger num poi nts/ 100/ ! nunber of epheneris data points

doubl e precision offsets(num points)
doubl e precision orbitdownl ongitude(max_orbits)

i nt eger nunorbits

charact er*27 asciiutc

character*27 or bi tascendti me(max_or bi ts)
character*27 or bi tdescendti me(nax_orbits)

! initialize asciiutc and offsets array with the times for
! actual epheneris records that will be processed (i.e. by
! some other tool)

asciiutc = '1998-02-03t19: 23: 45. 123
do 100 i =1, ephem array_size
of fsets(i) = i*60.D0
100 continue

! get the epheneris netadata associated with these tines

returnStatus = pgs_eph_get ephnet (pgsd_eos_am ephem array_si ze,
asciiutc,offsets, nunorbits,
or bi tascendti e,
or bi t descendti ne,
or bi t downl ongi t ude)

V V VYV

if (returnStatus .ne. pgs_s_success) then
** do some error handling ***
endi f

numOrbits will now contain the nunber of orbits spanned by the
data set (as defined by ascii UTC and EPHEM ARRAY_SI ZE of f sets).
orbitAscendTime will contain nunOrbits ASCII UTC tines
representing the time of northward equator crossing of the
spacecraft for each respective orbit. orbitDescendTine will
simlarly contain the southward equator crossing tinmes and

or bi t DownLongi tude will contain the southward equator crossing
| ongi t udes

Notes:

This function will determine the time span of the data set from the input UTC reference time and the offsets array. It will then attempt to retrieve the
metadata for all orbits spanned by the data set.

Files:
This tool accesses the following files:

® |eap seconds
® spacecraft ephemeris

The physical references to these files must be defined in the Process Control File (PCF).

The PCF template supplied with the Toolkit, SPGSRUN/$BRAND/PCF.relA contains the reference for the leap seconds file, if you are using a PCF
derived from that template, you need not do anything extra, to enable access to that file.

To access spacecraft ephemeris files in the SCF environment, you must add the appropriate files to the PCF. These files must be created by you for
testing purposes at the SCF. Spacecraft ephemeris files must be in the ECS ephemeris file format. Simulated files may be prepared through use of the
orbsim utility; (sec. 7.1.2.1); alternatively, you may prepare them yourself (sec. 7.1.2.2).

See sec. 3.1.2, Constructing your Process Control file, for information about PCF entries.

8. Time/Date (TD) Tools

8.1 Overview
8.1.1 Introduction

This section explains the use of the Time/Date (TD) tools. These are used to do conversions between various time scales and formats. The tools do
not get any times themselves; they only translate times that you supply.

https://newsroom.gsfc.nasa.gov/sdptoolkit/primer/time_notes.html#ASCII

Many Toolkit functions use these tools internally.

(Spacecraft clock times are obtained through use of the Level 0 (PGS_IO_LO_*) tools.)
8.1.2 Definition of Time Scales and Formats Used

In this section we give short definitions of the time scales used. Also given are the formats used in the Toolkit, and the Variable name used in the
examples.

GAST: Greenwich Apparent Sidereal timeGAST = Greenwich Mean Sidereal Time + (nutation in longitude)*cos(MEAN obliquity of the ecliptic)Toolkit:
hour angle of the true vernal equinox of date at the Greenwich meridian in radiansVariable name: gastGPS: Global Positioning System timeTime
broadcast by GPS satellites. Continuous seconds since Jan. 6, 1980 midnight (UTC).Toolkit: Double precision seconds since Jan. 6, 1980 midnight
(UTC).Variable name: secGPSSCtime: Spacecraft Clock timeTime recorded by spacecraft clock, and returned in Level 0 data in 8-byte packed
CCSDS binary format.Epoch: For EOS AM and PM, 1/1/1958, midnight UTC; for TRMM, 1/1/1993, midnight UTC.Exact format and clock resolution
are also platform dependent.Toolkit: 8-byte packed CCSDS binary format.Variable name: scTimeTAl: International Atomic TimeTime derived from
atomic measurements. Unit is the Sl second.Toolkit: Double precision seconds since Jan. 1, 1993 midnight (UTC).Variable name: secTAI93TDB:
Barycentric Dynamical TimeUsed as time scale for ephemerides referred to solar system barycenter. Differs from TDT only by periodic variations,
never exceeding +/- 2 milliseconds.Toolkit: Vector of two double precision numbers:1st element: Half-integral Julian date2nd element: Fraction of
Julian dateJulian date is days since Jan. 1, 4713 BC, Greenwich Mean Noon.A two element vector is used to allow maximum precision.Adding the two
components gives the full Julian date.Variable name: jedTDB[2]TDT: Terrestrial Dynamical TimeUsed as time scale for observations in the near earth
environment. Always 32.184 sec larger than TAI.Toolkit: Vector of two double precision numbers:1st element: Half-integral Julian date2nd element:
Fraction of Julian dateJulian date is days since Jan. 1, 4713 BC, Greenwich Mean Noon.A two element vector is used to allow maximum precision.
Adding the two components gives the full Julian date.Variable name: jedTDT[2]UT1: Universal Time (seconds and Julian Date)A measure of time that
conforms on the average to the mean diurnal motion of the sun. Time is counted from Ohrs Greenwich Apparent Solar Midnight. UT1 represents the
Earth's axial rotation at the value of one day (86,400 seconds) per full revolution. The actual time unit therefore varies with the Earth's rotational
speed. Currently, the mean rate of UT1 is about 0.999999974 the rate of TAI - in other words, the UT1 second is a bit longer than the SI second. This
time is offered in two forms: seconds since midnight and Julian Date.Toolkit- (sec): Double precision seconds since midnightVariable name:
secUT1Toolkit - (Julian Date): Vector of two double precision numbersVariable Name: jdUT1[2]JUTC: Coordinated Universal TimeThe basis of most
radio broadcast and legal time systems. Differs from TAI by an integral number of seconds, currently -30 sec (10/95). Difference changes on the order
of 1 second per year. Maintained within +/- 0.9 sec of UT1 by use of leap seconds.Toolkit: Two CCSDS ASCII Time Code formats:Format A: 27-
character string of the form yyyy-mm-ddThh:mm:ss.ffffffZFormat B: 25-character string of the form yyyy-dddThh:mm:ss.ffffffZ(the trailing "Z" is optional
for input values.)Some Toolkit functions allow arrays of offsets from a UTC time to be passed in. In this case, in addition to the UTC value, an array of
numbers (C: PGSt_double, FORTRAN: double precision), each of which is an offset in seconds from the UTC time, is passed into the function.
Variable names: ascilUTC_A, asciilUTC_B, time_offset

Reference for Consultative Committee for Space Data Systems (CCSDS) time code formats is Time Code Formats, CCSDS 301.0-B-2, Blue Book
Issue 2, April 1990, CCSDS Secretariat, Communications and Data Systems Division (Code-OS), NASA, Washington DC, 20546

Reference for spacecraft clock time information is the white paper Level 0 Data Issues for the ECS Project, sec. 4.2.8.

Reference for all other time scales is The Astronomical Almanac for the Year 1994, U.S. Naval Observatory, U.S. Government Printing Office,
Washington DC, 1993.

8.1.3 Time/Date Conversion Matrix

Here we present a matrix for determining which Toolkit function you need to use to perform a given time conversion.

The top of the matrix is the time scale you want to convert FROM; the right side of the matrix is the time scale you want to convert TO. Matrix entries
are the names of Toolkit Time/Date functions, with the "PGS_TD_" prefix omitted.

Ti me/ Dat e Conversion Matrix for PGS_TD * Tool s

CONVERT FROM TI ME SCALE

| UCA | UGB | TAl | sStime | GPS |

[------ [--------- [--------- [---------- [---------- [--------- |

| | | ASCl I ti ne| | SCtime_ | |

| UTC-A | X | _BtoA | TAItoUTC | to_UTC | GPStoUTC|

R R EEEEEE R, [---------- [---------- [--------- |

| | ASCl I tine| | | | |

| UTC-B | _AtoB | X | - | - | - |

T|------ EERREEREE EERREEEEE |- EEREEREEEE EERREEEEE |

0| | | | Tinme | | |

| TAl | UTCtoTAI| UTCtoTAI| Interval]| - | - |

LEEEEES el EECER Pl EEFEREERES EEREEEEEEE EERREEEEE |

[| UTC to_ | UTC to_ | | | |

M|SCtime| SCtime | SCtine | - | X | - |

T o T T T |

S|GPS | UTCoGPS| UTCt oGPS| - | - | X |

Cl------ [--------- [--------- [---------- [---------- [--------- |

A urct o | UTCto | | | |
L
E

--------------- R R EERCEEEPEI FECPREPRRY
|urid | urqo [utao | - | - -
| | urtid | utid | | | |

For example, to convert from spacecraft clock time to CCSDS UTC Time Code A format, use tool PGS_TD_SCtime_to_UTC.

These functions translate between two different time scales or formats. Function PGS_TD_Timelnterval is an exception, in that it returns the time
interval in seconds between two TAI times.

Descriptions of the tools are found in the next section.

8.2 Time/Date (TD) Tool Descriptions

This section contains an alphabetical listing of the descriptions of the individual PGS_TD_* tools.
8.2.1 PGS_TD_ASCIItimeAtoB

Short explanation of what it's for:

Convert CCSDS ASCII Time Code A format to CCSDS ASCII Time Code B format.
This function is in file: $PGSSRC/TD/PGS_TD_ASCIItimeAtoB.c

Examples:

C example:

#i ncl ude <PGS_TD. h>

char ascii UTC_A[28] ;

char ascii UTC_B[26];

PGSt _SMF_st at us returnStat us;

/*

Begi n exanpl e

*/

strcpy(ascii UTC_A, "1998-06- 30T10: 51: 28. 320000Z") ;
returnStatus = PGS_TD ASCl Iti me_At oB(ascii UTC A, ascii UTC B);
/*

vari abl e ascii UTC_B now contains the string
"1998-181T10: 51: 28. 320000Z"

*/

FORTRAN example:

I MPLICI T NONE

I NCLUDE ' PGS_SMF. '

I NCLUDE ' PGS_TD. f*

I NCLUDE ' PGS_TD_3. f'

I NTEGER pgs_td_asciitinme_atob
CHARACTER* 27 asciiutc_a
CHARACTER* 25 asciiutc_b

I NTEGER r et ur nst at us

Cc
C Begi n exanpl e
C
asciiutc_a = '1998-06-30T10: 51: 28. 320000'
returnstatus = pgs_td_asciitinme_atob(asciiutc_a,asciiutc_b)
Cc

C variable asciiutc_b now contains the string
C '1998-181T10: 51: 28. 320000Z'

Notes:

See sec. 8.1.2, "Definition of Time Scales and Formats Used" for explanations of the time scales and formats.

8.2.2 PGS_TD_ASClitimeBtoA

Short explanation of what it's for:

Convert CCSDS ASCII Time Code B format to CCSDS ASCII Time Code A format.
This function is in file: $PGSSRC/TD/PGS_TD_ASCIItimeBtoA.c

Examples:

C example:

#i ncl ude <PGS_TD. h>

char ascii UTC_Al 28] ;

char ascii UTC_B[26] ;

PGSt _SMF_st atus returnStatus;

/*

Begi n exanpl e

*/

strcpy(ascii UTC_B, "1998- 181T10: 51: 28. 320000Z") ;
returnStatus = PGS_TD _ASCl | ti me_Bt oA(ascii UTC_B, ascii UTC_A);
/*

variabl e ascii UTC_A now contains the string
"1998- 06- 30T10: 51: 28. 3200002"

*/

FORTRAN example:

I MPLI CI' T NONE

I NCLUDE ' PGS_SMF. f'

I NCLUDE ' PGS_TD. f'

I NCLUDE ' PGS_TD_3. f'

I NTEGER pgs_td_asciitine_btoa
CHARACTER* 27 asciiutc_a
CHARACTER* 25 asciiutc_b

I NTEGER r et ur nst at us

C
C Begi n exanpl e
C
asciiutc_b = '1998-181T10: 51: 28. 320000’
returnstatus =pgs_td_asciitime_btoa(asciiutc_b,asciiutc_a)
C

C variable asciiutc_a now contains the string
C ' 1998-06- 30T10: 51: 28. 320000Z'

Notes:

See sec. 8.1.2, "Definition of Time Scales and Formats Used" for explanations of the time scales and formats.

8.2.3 PGS_TD_GPStoUTC
Short explanation of what it's for:

Convert GPS seconds to UTC (CCSDS ASCII Time Code A format).
This function is in file: $PGSSRC/TD/PGS_TD_GPStoUTC.c
Examples:

C example:

#i ncl ude <PGS_TD. h>

PGSt _doubl e secGPS;

char ascii UTC_A[28];

PGSt _SMF_st atus returnStatus;

/*

Begi n exanpl e

*/

secGPS = 583239101. 320000;

returnStatus = PGS_TD_GPSt oUTC(secGPS, asci i UTC_A);
/*

variabl e ascii UTC_A now contains the string
"1998- 06- 30T10: 51: 28. 320000Z"

*/

FORTRAN example:

I MPLI CI' T NONE

I NCLUDE ' PGS_SMF. f'

I NCLUDE ' PGS_TD. f'

I NCLUDE ' PGS_TD_3. f'

| NTEGER pgs_td_gpstoutc
CHARACTER* 27 asciiutc_a
DOUBLE PRECI SI ON secgps
| NTEGER r et ur nst at us

C
C Begi n exanpl e
C
secgps = 583239101. 320000
returnstatus =pgs_td_gpstoutc(secgps, asciiutc_a)
C

C variable asciiutc_a now contains the string
C ' 1998-06- 30T10: 51: 28. 320000Z'

Notes:

See sec. 8.1.2, "Definition of Time Scales and Formats Used" for explanations of the time scales and formats.

8.2.4 PGS_TD_SCtime_to_UTC

Short explanation of what it's for: Convert Spacecraft clock time to UTC (CCSDS ASCII Time Code A format).
If input is an array of SCtimes, values are returned as offsets to the first time in the array.

This function is in file: $PGSSRC/TD/PGS_TD_SCtime_to_UTC.c
Examples:
Examples given are for the EOS AM platform. They apply also to the TRMM and EOS PM platforms.

C example:

#i ncl ude <PGS_TD. h>

PGSt _tag spacecraftlD;

PGSt _scTine scTine[3][8];
PGSt _i nt eger nunVal ues;

char ascii UTC_Al 28];

PGSt _doubl e time_offset[3];
PGSt _SMF_st atus returnStatus;
/*

Begi n exanpl e

*/

/* Spacecraft clock tinme array nust have been already prepared */
/* See notes to see howto retrieve this fromLO data */
/* In this exanple, we assune that the variable scTine
contains 8-byte packed CCSDS bi nary val ues that
correspond to the 3 UTC tines
1998- 06- 30T10: 51: 28. 320000Z
1998- 06- 30T10: 51: 29. 3200002
1998- 06- 30T10: 51: 30. 320000Z */

spacecraftl D = ECS_AM /* or TRMWM or ECS_PM */
nunval ues = 3;

returnStatus = PGS_TD SCTi me_t o_UTC(spacecraftlD,
scTi me, nunVal ues, asciiUTC A, tine_offset);
/*
vari abl e ascii UTC_A now contains the string
"1998- 06- 30T10: 51: 28. 320000Z"
array tine_offset now contains the val ues
time_offset[0] = 0.000000
tinme_offset[1] = 1.000000
tinme_offset[2] = 2.000000
*/

FORTRAN example:

I MPLICI T NONE

I NCLUDE ' PGS_SMF. f'

I NCLUDE ' PGS_TD. f'

I NCLUDE ' PGS_TD_3. f'

I NTEGER pgs_td_sctinme_to_utc
| NTEGER spacecraftid
CHARACTER*8 scti ne(3)

I NTEGER nunval ues

CHARACTER* 27 asciiutc_a
DOUBLE PRECI SI ON tinme_of fset (3)
I NTEGER r et ur nst at us

Begi n exanpl e

Spacecraft clock tine array nust have been al ready prepared
See notes to see howto retrieve this fromLO data
In this exanple, we assune that the 3-element array scTime
contains 8-byte packed CCSDS bi nary val ues that
correspond to the 3 UTC tines
1998- 06- 30T10: 51: 28. 3200002
1998- 06- 30T10: 51: 29. 320000Z
1998- 06- 30T10: 51: 30. 320000Z

O00000000000

spacecraftid = EOS_AM ! or TRW or ECS_PM
nunval ues = 3

returnstatus = pgs_td_sctinme_to_utc(spacecraftid,
sctine, nunval ues, asciiutc_a, tine_offset)

variable asciiutc_a now contains the string
"1998- 06- 30T10: 51: 28. 320000Z"

array tinme_offset now contains the val ues
tine_offset(1) = 0.000000

tinme_of fset(2) 1. 000000

tine_of fset(3) 2. 000000

O000000

Notes:

Spacecraft clock time as input to this tool is the same format as returned by the Toolkit Level 0 Access tools (available in a future Toolkit delivery).
Examples assume that the array scTime has previously been retrieved from Level 0 data.

See sec. 8.1.2, "Definition of Time Scales and Formats Used" for explanations of the time scales and formats.

8.2.5 PGS_TD_TAItoGAST

Short explanation of what it's for:

Convert TAI seconds from Jan 1, 1993 to Greenwich Apparent Sidereal Time (GAST).
This function is in file: $PGSSRC/TD/PGS_TD_TAItoGAST.c

Examples:

C example:

#i ncl ude <PGS_TD. h>

PGSt _doubl e secTAI 93;

PGSt _doubl e gast;

PGSt _SMF_st at us returnStatus;

/*

Begi n exanpl e

*/

secTAI 93 = 173357493. 320000;
returnStatus = PGS_TD TAl t 0GAST(secTAl 93, &gast) ;
/*

vari abl e gast now contains the val ue
1.416733538965 whi ch is GAST in radi ans
*/

FORTRAN example:

I MPLI CI' T NONE

I NCLUDE ' PGS_SMF. f'

I NCLUDE ' PGS_TD. f*

I NCLUDE ' PGS_TD_3. f'

I NCLUDE ' PGS_CSC 4. f"'

I NTEGER pgs_td_t ai t ogast
DOUBLE PRECI SI ON gast
DOUBLE PRECI SI ON sect ai 93
I NTEGER returnstatus

C
C Begi n exanpl e
C
sectai 93 = 173357493. 320000
returnstatus =pgs_td_taitogast(sectai 93, gast)
C

C vari abl e gast now contains the val ue
C 1.416733538965 which is GAST in radians

Notes:

See sec. 8.1.2, "Definition of Time Scales and Formats Used" for explanations of the time scales and formats.

8.2.6 PGS_TD_TAIltoUTC
Short explanation of what it's for:

Convert TAI seconds from Jan 1, 1993 to UTC (CCSDS ASCII Time Code A format).
This function is in file: $PGSSRC/TD/PGS_TD_TAItoUTC.c

Examples:

C example:

#i ncl ude <PGS_TD. h>

PGSt _doubl e secTAI 93;

char ascii UTC_A 28] ;

PGSt _SMF_st at us returnStat us;

/*

Begi n exanpl e

*/

secTAl 93 = 173357493. 320000;

returnStatus = PGS_TD TAIt oUTC(secTAl 93, asci i UTC_A);
/*

vari abl e ascii UTC_A now contains the string
"1998- 06- 30T10: 51: 28. 320000Z"

*/

FORTRAN example:

I MPLICI T NONE

I NCLUDE ' PGS_SMF. '

I NCLUDE ' PGS_TD. f*

I NCLUDE ' PGS_TD 3. f'

I NTEGER pgs_td_taitoutc
CHARACTER* 27 asciiutc_a
DOUBLE PRECI SI ON sect ai 93
I NTEGER r et ur nst at us

C
C Begi n exanpl e
C
sectai 93 = 173357493. 320000
returnstatus =pgs_td_taitoutc(sectai 93, asciiutc_a)
C

C variable asciiutc_a now contains the string
C ' 1998- 06- 30T10: 51: 28. 320000Z'

Notes:

See sec. 8.1.2, "Definition of Time Scales and Formats Used" for explanations of the time scales and formats.

8.2.7 PGS_TD_Timelnterval

Short explanation of what it's for: Find the interval between two TAI times.
This function is in file: $PGSSRC/TD/PGS_TD_Timelnterval.c

Examples:

C example:

#i ncl ude <PGS_TD. h>

PGSt _doubl e secTAI 93_1;

PGSt _doubl e secTAI 93_2;

PGSt _doubl e delta_TAl;

PGSt _SMF_st at us returnStat us;

/ *

Begi n exanpl e

*/

secTAI 93_1 = 173357493. 320000; /* 1998-06-30T10: 51: 28. 320000Z */
secTAI 93_2 = 173357496. 320000; /* 1998-06-30T10: 51: 31. 320000Z */
returnStatus = PGS_TD Ti nel nterval (secTAI 93_1, secTAl 93_2,

delta_TAl);
/*
vari abl e delta_TAl now contains the val ue
3. 000000

*/
FORTRAN example:

I MPLI CI' T NONE

I NCLUDE ' PGS_SMF. f'

I NCLUDE ' PGS_TD. f'

I NCLUDE ' PGS_TD 3. f'

I NTEGER pgs_td_timeinterval
DOUBLE PRECI SI ON sectai 93_1
DOUBLE PRECI SI ON sect ai 93_2
DOUBLE PRECI SI ON del ta_t ai

I NTEGER r et ur nst at us

Cc

C Begi n exanpl e

C
sectai 931 = 173357493. 320000; ! 1998-06-30T10: 51: 28. 3200002
sectai 932 = 173357496. 320000; ! 1998-06- 30T10: 51: 31. 3200002
returnstatus =pgs_td_tinmeinterval (sectai 93_1, sectai 93_2,

&delta_tai)

C

C variable delta_tai now contains the val ue

C 3.000000

Notes:

This function simply subtracts one TAI time from another. Since TAl is a continuous time stream, there are no considerations regarding leap seconds.

See sec. 8.1.2, "Definition of Time Scales and Formats Used" for explanations of the time scales and formats.

8.2.8 PGS_TD_UTC_to_SCtime

Short explanation of what it's for: Convert UTC time to spacecraft clock time.

This function is in file: $PGSSRC/TD/PGS_TD_UTC_to_SCtime.c

Examples:

Examples given are for the EOS AM platform. They apply also to the TRMM and EOS PM platforms.

Examples use CCSDS ASCII Time Code format A as the format of the input UTC. The function also accepts a time in CCSDS ASCII Time Code
format B.

C example:

#i ncl ude <PGS_TD. h>

PGSt _tag spacecraftlD;

char ascii UTC_Al 28];

PGSt _scTi ne scTi ne[8];

PGSt _SMF_st atus returnStatus;

/*

Begi n exanpl e

*/

spacecraft| D = ECS_AM /* or TRMW or ECS_PM */

strcpy(asciiUTC A, "1998-06-30T10: 51: 28. 320000Z") ;

returnStatus = PGS_TD UTC t o_SCTi ne(spacecraftlD,
ascii UTC_A, scTine);

/*

vari abl e scTi ne now contains an 8-byte packed CCSDS

binary format value, corresponding to the UTC tine

1998- 06- 30T10: 51: 28. 3200002

*/

FORTRAN example:

I MPLICI T NONE

I NCLUDE ' PGS_SMF. '

I NCLUDE ' PGS_TD. f*

I NCLUDE ' PGS_TD_3. f'

I NTEGER pgs_td_utc_to_sctine
| NTEGER spacecraftid
CHARACTER* 27 asciiutc_a
CHARACTER*8 scti ne

I NTEGER r et ur nst at us

C Begi n exanpl e

asciiutc_a = '1998-06-30T10: 51: 28. 3200002
spacecraftid = EOS_AM ! or TRW or ECS PM

returnstatus = pgs_td_utc_to_sctine(spacecraftid,
asciiutc_a, sctine)

C variabl e sctinme now contains an 8-byte packed CCSDS
C binary format value, corresponding to the UTC tine
C 1998- 06- 30T10: 51: 28. 3200002

C

Notes:
Spacecraft clock time as output from this tool is the same format as returned by the Toolkit Level 0 Access tools (available in a future Toolkit delivery).

See sec. 8.1.2, "Definition of Time Scales and Formats Used" for explanations of the time scales and formats.

8.2.9 PGS_TD_UTCtoGPS
Short explanation of what it's for: Convert UTC time to GPS time.
This function is in file: $PGSSRC/TD/PGS_TD_UTCtoGPS.c
Examples:

Examples use CCSDS ASCII Time Code format A as the format of the input UTC. The function also accepts a time in CCSDS ASCII Time Code
format B.

C example:

#i ncl ude <PGS_TD. h>

char ascii UTC_A[28] ;

PGSt _doubl e secGPS;

PGSt _SMF_st at us returnStat us;
/*

Begi n exanpl e

*/

strcpy(ascii UTC A, "1998- 06- 30T10: 51: 28. 320000Z");

returnStatus = PGS_TD UTCt oGPS(ascii UTC_A, &secGPS);
/~k

vari abl e secGPS now contains the val ue

583239101. 320000

*/

FORTRAN example:

I MPLI CI' T NONE
I NCLUDE ' PGS_SMF. '
I NCLUDE ' PGS_TD. f*
I NCLUDE ' PGS_TD 3. f"
I NTEGER pgs_td_utct ogps
CHARACTER* 27 asciiutc_a
DOUBLE PRECI SI ON secgps
I NTEGER r et ur nst at us

C

C Begi n exanpl e

C

asciiutc_a = '1998-06-30T10: 51: 28. 3200002
returnstatus = pgs_td_utctogps(asciiutc_a, secgps)
C variabl e secgps now contains the val ue
C 583239101. 320000
C

Notes:

See sec. 8.1.2, "Definition of Time Scales and Formats Used" for explanations of the time scales and formats.

8.2.10 PGS_TD_UTCtoTAI

Short explanation of what it's for: Convert UTC time to TAl seconds from Jan 1, 1993.
This function is in file: $PGSSRC/TD/PGS_TD_UTCtoTAl.c
Examples:

Examples use CCSDS ASCII Time Code format A as the format of the input UTC. The function also accepts a time in CCSDS ASCII Time Code
format B.

C example:

#i ncl ude <PGS_TD. h>

char ascii UTC_A 28] ;

PGSt _doubl e secTAI 93;

PGSt _SMF_st at us returnStatus;
/*

Begi n exanpl e

*/

strcpy(asciiUTC A, "1998- 06- 30T10: 51: 28. 320000Z");

returnStatus = PGS_TD UTCt oTAI (ascii UTC_A, &secTAI93);
/*

vari abl e secTAI 93 now contai ns the val ue

173357493. 320000

*/

FORTRAN example:

I MPLICI T NONE
I NCLUDE ' PGS_SMF. '
I NCLUDE ' PGS_TD. f*
I NCLUDE ' PGS_TD 3. f'
I NTEGER pgs_td_utct ot ai
CHARACTER* 27 asciiutc_a
DOUBLE PRECI SI ON sect ai 93
I NTEGER r et ur nst at us

C

C Begi n exanpl e

C

asciiutc_a = '1998-06-30T10: 51: 28. 320000Z'
returnstatus = pgs_td_utctotai (asciiutc_a, sectai 93)
C vari abl e sectai 93 now contains the val ue
C 173357493. 320000
C

Notes:

See sec. 8.1.2, "Definition of Time Scales and Formats Used" for explanations of the time scales and formats.

8.2.11 PGS_TD_UTCtoTDBjed

Short explanation of what it's for: Convert UTC time to Barycentric Dynamical time Julian date.
This function is in file: $PGSSRC/TD/PGS_TD_UTCtoTDBjed.c

Examples:

Examples use CCSDS ASCII Time Code format A as the format of the input UTC. The function also accepts a time in CCSDS ASCII Time Code
format B.

C example:

#i ncl ude <PGS_TD. h>

char ascii UTC_A 28];

PGSt _doubl e j edTDB[2] ;

PGSt _SMF_st atus returnStatus;
/*

Begi n exanpl e

*/

strepy(asciiUTC A, "1998- 06- 30T10: 51: 28. 320000Z") ;

returnStatus = PGS_TD UTCt oTDBj ed(ascii UTC_ A, jedTDB);

/*

vari abl e jedTDB now cont ai ns the val ues

j edTDB[0] = 2450994.5 -- Half-integral TDB Julian date
jedTDB[1] = 0. 45315398299 -- Fraction of TDB Julian date
*/

FORTRAN example:

I MPLI CI T NONE
I NCLUDE ' PGS_SMF. f'
I NCLUDE ' PGS_TD. f*
I NCLUDE ' PGS_TD 3. f"
I NTEGER pgs_td_utct ot dbj ed
CHARACTER* 27 asciiutc_a
DOUBLE PRECI SI ON j edt db(2)
I NTEGER r et ur nst at us

C

C Begin exanple

C

asciiutc_a = '1998-06-30T10: 51: 28. 3200002
returnstatus = pgs_td_utctotdbjed(asciiutc_a, jedtdb)

C variabl e jedtdb now contains the val ues

C jedtdb(1l) = 2450994.5 -- Half-integral TDB Julian date
C jedtdb(2) = 0.45315398299 -- Fraction of TDB Julian date

C

Notes:

Adding the two components of the output vector gives the full Julian date.
See sec. 8.1.2, "Definition of Time Scales and Formats Used" for explanations of the time scales and formats.

8.2.12 PGS_TD_UTCtoTDTjed

Short explanation of what it's for: Convert UTC time to Terrestrial Dynamical time Julian date.
This function is in file: $PGSSRC/TD/PGS_TD_UTCtoTDTjed.c
Examples:

Examples use CCSDS ASCII Time Code format A as the format of the input UTC. The function also accepts a time in CCSDS ASCII Time Code
format B.

C example:

#i ncl ude <PGS_TD. h>

char ascii UTC_Al 28] ;

PGSt _doubl e j edTDT[2] ;

PGSt _SMF_st at us returnStatus;
/*

Begi n exanpl e

*/

strcpy(asciiUTC A, "1998- 06- 30T10: 51: 28. 320000Z");

returnStatus = PGS_TD UTCt oTDTj ed(ascii UTC_A, jedTDT);

/*

vari abl e j edTDT now contains the val ues

j edTDT[0] = 2450994.5 -- Half-integral TDT Julian date
j edTDT[1] = 0.45315398148 -- Fraction of TDT Julian date
*/

FORTRAN example:

I MPLICI T NONE

I NCLUDE ' PGS_SMF. '

I NCLUDE ' PGS_TD. f*

I NCLUDE ' PGS_TD_3. f'

I NTEGER pgs_td_utctotdtjed
CHARACTER* 27 asciiutc_a
DOUBLE PRECI SI ON j edt dt (2)
I NTEGER r et urnst at us

C Begi n exanpl e

asciiutc_a = '1998-06-30T10: 51: 28. 3200002
returnstatus = pgs_td_utctotdtjed(asciiutc_a, jedtdt)

C variabl e jedtdt now contains the val ues

C jedtdt(1l) = 2450994.5 -- Half-integral TDT Julian date
C jedtdt(2) = 0.45315398148 -- Fraction of TDT Julian date

C

Notes:
Adding the two components of the output vector gives the full Julian date.

See sec. 8.1.2, "Definition of Time Scales and Formats Used" for explanations of the time scales and formats.

8.2.13 PGS_TD_UTCtoUT1

Short explanation of what it's for: Convert Coordinated Universal Time (UTC) to Universal Time (UT1), in seconds since midnight.
This function is in file: $PGSSRC/TD/PGS_TD_UTCtoUT1.c
Examples:

Examples use CCSDS ASCII Time Code format A as the format of the input UTC. The function also accepts a time in CCSDS ASCII Time Code
format B.

C example:

#i ncl ude <PGS_CSC. h>

#i ncl ude <PGS_TD. h>

char ascii UTC_A[28] ;

PGSt _doubl e secUT1;

PGSt _SMF_st at us returnStat us;
/*

Begi n exanpl e

*/

strcpy(ascii UTC A, "1998-06- 30T10: 51: 28. 320000Z");

returnStatus = PGS_TD UTCt oUT1(ascii UTC_A, &secUT1);
/*

vari abl e secUT1 now contains the val ue

39088. 083809

seconds since m dnight

*/

FORTRAN example:

I MPLI CI' T NONE

I NCLUDE ' PGS_SMF. f'

I NCLUDE ' PGS_TD. f*

I NCLUDE ' PGS_TD_3. f'

I NCLUDE ' PGS_CSC 4. f'

I NTEGER pgs_td_utctoutl
CHARACTER* 27 asciiutc_a
DOUBLE PRECI SI ON secut 1
I NTEGER r et ur nst at us

C Begi n exanpl e

asciiutc_a = '1998-06-30T10: 51: 28. 3200002
returnstatus = pgs_td_utctoutl(asciiutc_a, secutl)
C variabl e secutl now contains the val ue
C 39088. 083809
C seconds si nce midni ght
C

Notes:

See sec. 8.1.2, "Definition of Time Scales and Formats Used" for explanations of the time scales and formats.

8.2.14 PGS_TD_UTCtoUT1jd

Short explanation of what it's for: Convert Coordinated Universal Time (UTC) to Universal Time (UT1), as a Julian Date.
This function is in file: $PGSSRC/TD/PGS_TD_UTCtoUT1jd.c
Examples:

Examples use CCSDS ASCII Time Code format A as the format of the input UTC. The function also accepts a time in CCSDS ASCII Time Code
format B.

C example:

#i ncl ude <PGS_CSC. h>

#i ncl ude <PGS_TD. h>

char ascii UTC_ A 28];

PGSt _doubl e j dUT1[2] ;

PGSt _SMF_st at us returnStat us;
/*

Begi n exanpl e

*/

strcpy(ascii UTC_A, "1998-06-30T10: 51: 28. 320000Z");

returnStatus = PGS_TD_UTCtoUT1jd(ascii UTC A jduUTl);

/*

vari abl e jdUT1 now contains the val ues

jdUT1[0] = 2450994.5 -- Half-integral UT1 Julian date
jdUT1[1] = 0.452408392935 -- Fraction of UT1 Julian date
*/

FORTRAN example:

| MPLI CI T NONE
I NCLUDE ' PGS_SMF. f'

I NCLUDE ' PGS_TD. f'

I NCLUDE ' PGS_TD 3. f*
I NCLUDE ' PGS_CSC 4. f'

I NTEGER pgs_td_utctoutljd
CHARACTER* 27 asciiutc_a
DOUBLE PREC!I SI ON j dut 1(2)
I NTEGER r et ur nst at us

C
C Begi n exanpl e
C
asciiutc_a = '1998-06-30T10: 51: 28. 320000Z'
returnstatus = pgs_td_utctoutljd(asciiutc_a, jdcutl)
C
C variable jdutl now contains the val ues
C jedtdb(1) = 2450994.5 -- Half-integral UT1 Julian date
C jedtdb(2) = 0.452408392935 -- Fraction of UT1 Julian date
C
Notes:

Adding the two components of the output vector gives the full UT1 Julian date.

See sec. 8.1.2, "Definition of Time Scales and Formats Used" for explanations of the time scales and formats.

9. Ancillary Data Access (AA) Tools

9.1 Ancillary Data Access (AA) Tools Overview
9.1.1 Introduction

The tools in this section are used to access ancillary data, i.e., data required for production processing which is obtained from independent external
sources, and eventually other EOS products.

These tools are optional, in the sense that you may use your own functions to access this data if you so desire. The advantage to using the Toolkit
functions is in reducing your coding effort, by providing geographic-type access to datasets having a geographic context. The tools are made to be as
general as possible; however, you may still wish to write custom code, if the Toolkit functions do not entirely fill your needs.

The Toolkit functions divide into three groups: (1) tools which access vector format data, (2) tools which access gridded rectangular data, including
digital elevation models (DEMs), and (3) tools which may be used by you to access an ASCII file. Group (1) consists only of a single tool that
accesses a specific vector format file. Group (2) further divides into access of databases supplied with the Toolkit, and access to your own database
using the Toolkit functions.

9.1.2 Accessing vector format data

There is one Toolkit function which accesses vector format data, PGS_AA_DCW. This function reads the land/sea/ice flag from the Digital Chart of the
World (DCW) database only, a subset of which is supplied with the Toolkit delivery.

DCW is a general purpose digital global database designed for GIS (Geographical Information Systems) applications, with a scale of 1:1,000,000; it is
in Vector Product Format (VPF). Essentially, for a given latitude and longitude, the Toolkit function will retrieve the land/sealice flag from the database
corresponding to that position.

The DCW data files were installed in the directory of your choosing when you installed the Toolkit; this special handling is due to the fact that these
files are large. These files are in subdirectories eurnasia, noamer, soamafr, and sasaus; their parent directory was specified by you when you installed
the Toolkit.

In contrast to the gridded rectangular data access tools given below, function PGS_AA_DCW reads only DCW VPF data; it cannot be adapted to read
an abritrary vector format file, unless you wish to go to the trouble of creating your own VPF database.

The DCW database contains other parameters, e.g., drainage and contour data; implementation of these awaits further requirements.

The reference documentation for DCW is Digital Chart of the World -- Final DCW Product Specification MIL-D-89009, December 7, 1991.

For information on VPF consult the document Vector Product Format (MIL-STD-600006).

Both documents may be obtained from the Defense Mapping Agency Systems Center (AQE), 8613 Lee Highway, Fairfax, VA, 22031, Attn: Ms. Jean
Rollins, Sr. Contract Specialist.

9.1.3 Accessing rectangular gridded data

These tools read datasets that are formatted as either 2- or 3-dimensional rectangular grids in various map projections. The map projections currently
allowed are the equal angle (Platte Carre) projection and the NMC RUC model polar stereographic projection.

The tools include PGS_AA_DEM, PGS_AA_2DGEO and PGS_AA_3DGEO, which retrieve data for given latitudes and longitudes, and PGS_AA_2DR
ead and PGS_AA_3DRead, which access data for a given grid position coordinate or rectangular area. The tools may be used to either access the
datasets supplied with the Toolkit, or alternatively for your own gridded rectangular datasets.

The Freeform software package from NOAA/NGDC has been adapted for Toolkit use in these tools. It is used internally by the Toolkit functions; the
Freeform format is also used for formal data descriptions.

A note about FORTRAN: Because the internal C Toolkit gridded rectangular data access functions return the C short and long data types, for which
the only corresponding ANSI FORTRAN 77 data type is INTEGER, there are separate files for the C and FORTRAN versions of these tools. However,
the calling sequences are identical in C and FORTRAN.

9.1.3.1 Accessing the supplied rectangular gridded datasets

The datasets supplied with the Toolkit were selected on the basis of being the best currently available data, for which there were clear requirements
from the various instrument teams. These datasets were supplied by NOAA's National Geophysical Data Center (NGDC).

In particular, the DEM datasets, namely DMA and TerrainBase, are the best available (as of Dec. 1994). The other datasets supplied with the Toolkit
are old, and of low resolution; they are useful for prototyping and testing purposes, even if you do not plan to use them in your software at the DAAC.
Additional datasets may be delivered in later versions of the Toolkit.

2-dimensional datasets

2D Rectangul ar Gri dded Datasets Supplied Wth Tool kit

Data Set Units Cell size Filename Olson World Ecosystems v1.3a 30 cats 30 arc min owel3a.img v1.4d 74 cats 10 arc min owel4d.img v1.4dr 3
cats 10 arc min owel4dr.img v1.3a (Madagascar) 29 cats 30 arc min mowel3a.img FNOC modal elevation meters 10 arc min fnocmod.imgs*
maximum elevation meters 10 arc min fnocmax.imgs* minimum elevation meters 10 arc min fnocmin.imgs* primary & secondary surface types 10 cats
10 arc min fnocpt.img ocean/land mask 2 cats 10 arc min fnococm.img number of ridges count 10 arc min fnocrdg.img direction of ridges degrees 10
arc min fnocazm.img water & urban cover percent 10 arc min fnocwat.img Zobler Soil types 108 cats 60 arc min srzsoil.img associated & included soil
units 279 cats 60 arc min srzsubs.img* near surface soil texture 10 cats 60 arc min srztex.img surface slope 10 cats 60 arc min srzslop.img soil phase
87 cats 60 arc min srzphas.img special codes 12 cats 60 arc min srzcode.img world areas 9 cats 60 arc min srzarea.img Etop05 surface elevation
meters 5 arc min etop05.dat* DMA Conterminous USA meters 30 arc sec usatile# (# = 1 to 12) Terrainbase global DEM Complete meters 5 arc min
tbase.bin Tiled meters 5 arc min thase.xx (see notes)

Notes:

In the table, dataset file names marked with a "*" also have a separate file especially for use on the DEC workstation,; it is the same filename with
"_dec" appended. This is due to the fact that on the DEC binary data is "byte-swapped", i.e., every two bytes are in reverse order than on all the other
ECS-approved workstations.

(The DEMs do not need byte-swapped versions since the DEM tool does this internally.)

"cats" refers to the number of categories available in the dataset, in the returned value of the data.

In the dataset names listed in the table, FNOC stands for Fleet Numerical Ocenographic Center, Etop05 denotes Elevation Topographical 5 minutes,
and DMA is Defense Mapping Agency.

https://www.ngdc.noaa.gov/mgg/topo/freeform/freeform3.1.pdf

The Terrainbase global DEM, Tiled database consists of four files: thase.tl, tbase.tr, tbase.bl, tbase.br, corresponding to top left, top right, bottom left,
and bottom right quadrants of a world map.

You may want to look at information about this data, obtained from the NOAA/NGDC WWW server.

General information about the CD-ROM is given in the Global Ecosystems Data on CD-ROM Flier SE-2006.

More specific info may be obtained in the Global Ecosystems Database, Version 1.0 (on CD-ROM) DISC-A. On the main menu, "Global (Geographic
-- lat/long) Raster Data-Sets Description" section, the datasets supplied with the Toolkit are numbered

® AO05 Olson World Ecosystems
® A1l Staub and Rosensweig Zobler Soil Type, Soil Texture, Surface Slope, and Other properties (Zobler)
® A13 FNOC Elevation, Terrain, and Surface Characteristics (FNOC)

(Information about the Etop05, DMA and TerrainBase datasets are given only on the CD-ROM itself.)

Hardcopy documentation consists of the User's Guide (EPA/600/R-92/194a) and the Documentation Manual, Disc A (EPA/600/R-92/194b) for the Glob
al Ecosystems Database, Version 1.0 (on CD-ROM), published by EPA Global Climate Research Program, NOAA/NGDC Global Change Database
Program, NGDC Key to Geophysical Records Documentation No. 26, Incorporated in: Global Change Database, Vol. 1, NOAA/NGDC, 325 Broadway,
Boulder, CO 80303, June 1992.

3-dimensional dataset

There is one additional dataset supplied, which is 3-dimensional. Named nmcRucPotPres.datrepack (nmcRucPotPres.datrepack_dec for DEC
workstations), it is derived from a particular NMC Rapid Update Cycle (RUC) Analysis and Forecast System sequential dataset, forecast at 00Z, which
is is GRIB format. The specific two parameters chosen for this test dataset are the potential temperature profile (POT, NMC parm #13, in deg.K) and
the pressure profile (PRES, NMC parm #1, in Pa) at 4 sigma levels; they are in the NMC RUC model polar stereographic projection. (Sigma is the
ratio of pressure to surface pressure.) The 4 sigma levels included are 1.0, 0.8, 0.6 and 0.4, in that order in the data file. These parameters were
selected from a model run for a test period. These data are intended for test purposes only, and are not generally applicable.

For those interested, documentation of the GRIB format is available via anonymous ftp from the NOAA NMC public data server "nic" at nic.fb4.noaa.
gov (140.90.50.22) in the directories /pub/nws/nmc/docs/gribguide and /pub/nws/nmc/docs/gribed1.

ECS' source for this information is the EOS document Documentation for NOAA's NMC Gridded Data Products, Version 0.1, 6 October 1994, by
Matthew Schwaller (matt@ulabsgi.gsfc.nasa.gov), Brian Krupp (krupp@spso2.gsfc.nasa.gov), and Anand Swarroop.

Note that in general before use GRIB files must first be reformatted to simple binary using the available decoders.

Note: A discrepancy was discovered after the Toolkit package was delivered. The order of the parameters in format file nmcRucSigPotPres.bfm is
incorrect. The file should look like this:

nncRucSigPot 1 4 float 1
nncRucSigPres 5 8 float 1

because this is the actual order of the data in the file. Please edit this file and reverse the order so that it looks like the above. Otherwise, the data
returned will be reversed, e.g., the potential temperature will be in the pressure position in your output variable and vice versa.

Details of how to use the Toolkit to access the supplied datasets are given in the Tool Descriptions for the appropriate tools, including PGS_AA_2DGEO
, PGS_AA_3DGEO, PGS_AA_2DRead, PGS_AA 3DRead and PGS_AA_DEM.

The first four of these access a single physical file; function PGS_AA_DEM may be used to access a group of physical files which are part of the same
data set, i.e., in the same format.

For more details of how the Toolkit works internally to access these files, see the next section.

9.1.3.2 Accessing your own rectangular gridded datasets

You may use the Toolkit to access your own ancillary files, provided they are rectangular gridded datasets, in the equal angle (Platte Carre) projection
or the NMC RUC model polar stereographic projection. In this section we explain how to do this step-by-step. We show how to prepare the format file,
the support file, the Toolkit Process Control file, and the index file. (Definitions of these appear in the following sections.)

As an example, we show how the North America regional digital elevation model (DEM) from the TerrainBase CD-ROM would be prepared for access
by Toolkit AA tools. TerrainBase is a new (8/94) worldwide digital terrain database from the U.S. Defense Mapping Agency, available from NOAA
INGDC.

The TerrainBase data set is now (3/95) part of the Toolkit delivery; so you wouldn't need to perform the actions given in this example to use that data.

A general overview of the Global View CD-ROM is available. Contact Allen M. Hittelman, Solid Earth Geophysics Division, NGDC, at amh@ngdc.noaa.
gov.

The name of the North America file is america.bin. We choose to put this file in the default directory for PRODUCT INPUT files, viz. $PGS_PRODUCT
_INPUT. (Please note that this file is not included in the Toolkit delivery. It is used here for illustrative purposes only.)
This example shows how to prepare a single physical file for Toolkit access.

This particular example file contains 2-byte data that is ordered with the low byte first. If you are using this particular file at the SCF, this means that
unless you are on the DEC workstation, you have to translate the data file to put high byte first. A simple program that reads in every 2 bytes, then
writes out the 2nd byte first and the 1st byte second, will do the trick. At the DAAC this function is done by preprocessing software, independent of
your software and the Toolkit.

http://nic.fb4.noaa.gov
http://nic.fb4.noaa.gov
http://ulabsgi.gsfc.nasa.gov
http://spso2.gsfc.nasa.gov
mailto:amh@ngdc.noaa.gov
mailto:amh@ngdc.noaa.gov

9.1.3.2.1 Preparing the Format File

First you need to make a format file. This text file contains information about the actual format of the main dataset. It is used by the Freeform software
internally in the Toolkit. Each main data set has exactly one format file.

In our simple example, this file has only one line; it looks like:

aneri caSealLevel El evM)5 1 2 short 0

Explanation of parameters:

americaSealevelElevMO5 -- Toolkit parameter ID stringString used as input to Toolkit functions (1st argument parms), when you want to retrieve this
parameter. This string can be anything you like; here we identify the parameter as North America, 5 minute grid, sea level elevation, in meters.1

2 -- Input start and stop bytesStart and stop bytes of the parameter on the grid.short -- Input data type of the parameterSince this is used by Freeform,
which is written in C, this is a C data type. Long, float and double are also valid. This value is machine dependent.O -- reserved for future use

Only main datasets that are binary files are supported in this Toolkit release. The Freeform software requires such files to be named with suffix ".bfm",
so you need to name this file accordingly. To be consistent with the main dataset name, we choose to call this file america.bfm. Also, we choose to put
this file in directory $PGSHOME/runtime, where $PGSHOME is where you installed the Toolkit.

Interleaving of data is possible.
9.1.3.2.2 Preparing the Support File

Next you need to prepare a support file. This file contains metadata about the main dataset. A given support file may be used for many main
datasets, as appropriate.

The text file which describes this subset of the TerrainBase data looks like this:

cacheFor mat 1 = short
cacheFor mat 2 =
cacheFormat Bytes = 2
par mvenor yCache = 1362528
dat aType = short

aut oQper ati on =
fil eMenoryCache

maxLat
m nLat
maxLong = -52.0
m nLong =

xCel | s
yCel | s
zCel | s

nou
o
o

o
(e}
©
()}

Explanation of parameters:

short -- cacheFormatl1Data type you want as output from the Toolkit call. Long, float and double are also valid. In FORTRAN, if you

use short or long in this field, the result is cast to PGSt_integer by the Toolkit.0 -- cacheFormat2reserved for future use2 -- cacheFormatBytesMachine-
specific size of cacheFormatl in output. If you do not know this, you might write a short program in C using the sizeof function to determine it;
alternatively, many debuggers will supply this information.1362528 -- parmMemoryCacheSize in bytes of the output data for this parameter, which has
type cacheFormatl.If there is only one parameter in the input file, and cacheFormatl is the same as the input data type in the format file (see sec
9.1.3.2.1, "Preparing the Format File", for a description), then this value is the same as fileMemoryCache. Otherwise, you need to calculate the total
number of bytes for this parameter.short -- dataTypeThis must be identical to cacheFormatl.1 -- autoOperationThis parameter is for applying
operations to the main dataset, which are necessary to get the data out in the proper form. Operations currently available (with parameter value in
parentheses) include calculating row cell coordinates from geographic coordinates assuming either equal angle (Platte Carre) (1) or NMC RUC model
polar stereographic (2) projection, and recalculating geographic coordinates assuming longitude 0 at either Greenwich (4) or the International Date
Line (8). More than one auto operation may be applied at once by summing the parameter values. See the "Auto operations" section in the Toolkit
Users Guide, Appendix D, sec. 3.2.3 .For this particular data set, the equal angle (Platte Carre) function is applied to the raw data.

1362528 -- fileMemoryCacheSize in bytes of main dataset file america.bin65.0 -- maxLat5.0 -- minLat-52.0 -- maxLong-135.0 -- minLongMinimum and
maximum latitude and longitude of main dataset684 -- xCells996 -- yCells0 -- zCellsNumber of cells in each dimension of main dataset.x direction is
fastest changing, z direction is slowest

We choose to call this file americaSupport, and to put it in directory $PGSHOME/runtime.

The above description also covers all support files delivered with the Toolkit, with one exception: the NMC RUC 3D extracted test datasets. For these
datasets, the following fields are added, using examples from the file nmcRucSupport:

22.8756 -- lowerLeftLatLower left latitude of the grid origin cell239.5089 -- lowerLeftLongLower left longitude of the grid origin cell, in E
coordinates68153.0 -- meshLengthLength in meters of the cell255.0 -- gridOrientationGrid orientation in E coordinates
9.1.3.2.3 Preparing the Process Control File entries

This section explains the entries you need to make in the Toolkit Process Control file (PCF).

Before we start, please note that the logical identifer numbers that you use in the first column of the PCF must not be in the range 10000 - 10999, as
these are reserved for internal Toolkit use. Also, in the PCF examples, the vertical ellipsis ". . ." refers to entries for other files.

First you need to put an entry for your main data file into the PCF. Here is what this entry would look like:

? PRODUCT I NPUT FILES
[set env var PGS_PRODUCT_I NPUT for default |ocation]

501| arerica. bin| ||| 1

Here 501 is the logical file identifier you use as input to Toolkit functions in your code (via #define in C or PARAMETER in FORTRAN), america.bin is
the name of your main data file, and 1 is the required version number. By default, this file resides in directory $PGS_PRODUCT_INPUT.

Next you need to put an entry in the PCF for your support file. This entry looks like

? SUPPORT | NPUT FI LES

These are support files for the data set files - to be created
by user (not necessarily a one-to-one relationship)
The IDs nust correspond to the logical IDs in the index file

;502| anericaSupport|~/runtime||]|]|1

The filename is $PGSHOME/runtime/americaSupport, where $PGSHOME is the directory where you installed the Toolkit.

You also need an entry in the PCF for your format file. This entry looks like

? SUPPCORT | NPUT FI LES

The following are format files for each data set file
(not necessarily a one-to-one rel ationship)
The IDs nust correspond to the logical IDs in the index file

503 anerica. bf { ~/runtime| ||| 1

This file is named $PGSHOME/runtime/america.bfm.

For more details on using the PCF, see sec. 3.1.2, Constructing your Process Control file.

9.1.3.2.4 Preparing the Index File entry

You also need to make an entry in the Index file. This is an AA-tool specific file which maps the support and format files to the main dataset file. It
already exists as $PGSHOME/runtime/indexFile, and contains entries for Toolkit-supplied gridded rectangular datasets.

First, edit the first line of this text file; add 1 to the number there. This is the number of entries in the file -- 23 are delivered with the Toolkit, so if you
are adding one more, change it to 24.
Second, add an entry for your file to the end of the file. This looks like

aner i caSealevel El evMD5 502 503

Explanation of parameters:

americaSealevelElevMO5 -- Toolkit parameter ID stringString used as input to Toolkit functions (1st argument parms), when you want to retrieve this
parameter. Must be identical to the first field in the format file. (see sec 9.1.3.2.1, "Preparing the Format File", for a description.)502 -- Support file
logical identifierMust be identical to the number used in field 1 of the PCF entry for the support file americaSupport. (see sec 9.1.3.2.3, "Preparing the
Process Control File entries".)503 -- Format file logical identifierMust be identical to the number used in field 1 of the PCF entry for the format

file america.bfm. (see sec 9.1.3.2.3, "Preparing the Process Control File entries".)

Now that you have done all this, you may use the Toolkit functions to retrieve the data. See the tool descriptions of PGS_AA_2DGEO, PGS_AA_3DGEO
, PGS_AA_2DRead, PGS_AA_3DRead, and PGS_AA_DEM for further information.

9.1.4 Accessing data from an ASCII file

You may use a text file as an ancillary input file.

If this file has all its data in the format

PARAMETER=val ue

where PARAMETER is some keyword and value is its value, then you may use one of the PGS_AA_PeV* tools to read it. You pass it PARAMETER an
d it returns value.

Which function you use depends on what data type you want the returned value to be in:
Use PGS_AA_PeV_string, PGS_AA_PeV_real, or PGS_AA_PeV_integer to return the value as string, real or integer respectively.

9.2 Ancillary Data Access (AA) Tool Descriptions

9.2.1 PGS_AA_2DGEO

Short explanation of what it's for: Obtain data from a 2D rectangular gridded dataset for a given latitude and longitude.
This function is in file: $PGSSRC/AA/generic/PGS_AA_2DGEO.c and $PGSSRC/AA/generic/PGS_AA_2DGEOF.c
Examples:

Example uses the Etop05 dataset supplied with the Toolkit. Data is retrieved for 3 geographical locations.

C example:

#i ncl ude <PGS_AA. h>

#define ETOPO5 10955 /*Permanent |ogical ID for Etop05 dataset*/
#define NPARMS 1 /* No. paraneters requested */

#define NPTS 3 /* No. points requested */

#define MAX_STRING 30 /* arbitrary */

char par ns[NPARVS] [MAX_STRI NG ;
PGSt _doubl e | atitude[NPTS];
PGSt _doubl e | ongi t ude[NPTS] ;
PGSt _i nt eger version;

PGSt _i nt eger operation;

short results[NPTS]; /* WARNING This data type nust be
identical to the cacheFormatl field in
the support file */

PGSt _SMF_st at us returnStat us;
/* Begin exanple */

/* Define paranmeter nane desired
WARNI NG This string nust be
identical to the Toolkit paraneter ID string field
in both the format file
and the index file entry */

strcpy(parms[0], "etopO5Sealevel El evM');

latitude[0] = 51.5;
| ongi tude[0] = 0. 166666;

latitude[1] = 51.236666;
| ongi tude[1] = 0. 3832;

latitude[2] = 50.973333;
I ongi tude[2] = 0.5999;

/* version corresponds to version nunber in the
Process Control file entry for the main dataset
Usual value is 1 */

version = 1;

/* Apply "nearest cell" operation; finds result at cell center
(Currently this is the only allowed value for 2D datasets) */

operation = 1;
/* Call Toolkit function to find elevations at given |lats/l|ongs*/

returnStatus = PGS_AA 2DGEQ(parns, NPARMS, |atitude,
| ongi tude, NPTS, ETOP05, version, operation,
results);

/*

Array results now contains the followi ng elevations in nmeters:
results[0] = 20

resul ts[1] 64

resul ts[2] 1

*/

FORTRAN example:

| MPLI CI T NONE

I NCLUDE ' PGS_SMF. f'

| NCLUDE ' PGS_AA 10. f'
| NCLUDE ' PGS_PC 9. f*

| NTEGER pgs_aa_2dgeo
| NTEGER ETOP05

PARAMETER (ETOP05=10955) ! Pernanent |ogical ID for Etop05
| NTEGER NPARMS

PARAMETER (NPARMS=1) I No. paraneters requested
I NTEGER NPTS
PARAMETER (NPTS=3) ! No. points requested

CHARACTER* 30 par ms(NPARVS)

DOUBLE PRECI SI ON | at i t ude(NPTS)
DOUBLE PRECI SI ON | ongi t ude(NPTS)
| NTEGER ver si on

| NTEGER operation

C The data type of the results variable nust correspond to the
C cacheFormatl field in the support file as foll ows:

C

C cacheFormat 1 results

C short | NTEGER

C long | NTEGER

C float REAL

C doubl e DOUBLE PRECI SI ON

I NTEGER r esul t s(NPTS)
I NTEGER returnstatus
Begi n exanpl e
Define paraneter nanme desired
WARNI NG This string nust be
identical to the Toolkit paraneter ID string field in

in both the format file
and the index file entry

O0000 000

parns(1l) = 'etopO5Sealevel El evM

latitude(1l) = 51.5
| ongi tude(1l) = 0.166666

latitude(2) = 51.236666
I ongi tude(2) = 0.3832

latitude(3) = 50.973333
I ongi tude(3) = 0.5999

C version corresponds to version nunber in the
C Process Control file entry for the main dataset
C Usual value is 1

version =1

C Apply "nearest cell" operation; finds result at cell center
C (Currently this is the only allowed value for 2D datasets)

operation =1
C Call Toolkit function to find el evations at given |ats/|ongs
returnstatus = pgs_aa_2dgeo(parnms, NPARMVS, |atitude,
| ongi tude, NPTS, ETOPO5, version, operation,

results)

C Array results now contains the follow ng elevations in neters:

Cresults(l) = 20
Cresults(2) = 64
Cresults(3) = 1

Notes:
Currently, the input 2D dataset must be in the equal angle (Platte Carre) map projection in order for this tool to read it.

The number NPTS used for the dimension of the input and output variables must be exactly equal to the 5th argument in the calling sequence of the
Toolkit function.

The next-to-last argument in the calling sequence operation is called the user operation; it specifies what additional functions you wish to apply to the
data.
For this function, the value 1, which denotes operation PGS_AA_NEAREST_CELL, is currently the only available option.

Warning: Please make sure you have enough memory to access a given dataset. The Toolkit reads the entire dataset into memory at once. This may
result in slow or erratic performance on machines with low memory available.

Note that the dataset etop05.dat of this example is 19 MB.

All other sample datasets supplied with the Toolkit are less than 5 MB.

The main dataset accessed in the example is etop05.dat (etop05.dat_dec if you have a DEC workstation). The format and support files for this dataset
are etop05.bfm and etopO5Support respectively; they are nominally located in directory $PGSHOME/runtime, unless you directed otherwise at Toolkit
installation.

We reproduce the latter two files here for reference.

See sec. 9.1.3.2, " Accessing your own rectangular gridded datasets" for explanation of the parameters.

Listing of File etop05.bfm

etopO5SealevelElevM 1 2 short 0

Listing of File etopO5Support

cacheFormatl = short cacheFormat2 = 0 cacheFormatBytes = 2 parmMemoryCache = 18662400 dataType = short autoOperation = 5
fileMemoryCache = 18662400 maxLat = 90.000 minLat = -90.0000 maxLong = 180.000 minLong = -180.000 xCells = 4320 yCells = 2160 zCells = 0

9.2.2 PGS_AA_2DRead

Short explanation of what it's for: Obtain data from a 2D rectangular gridded dataset for a given grid area.

This function is in file: $SPGSSRC/AA/generic/PGS_AA_2DRead.c and $PGSSRC/AA/generic/PGS_AA 2DReadF.c
Examples:

Example uses the OlsonWorldEcosystems v1.3a dataset supplied with the Toolkit. Data is retrieved for a 2x3 cell grid.

C example:

#i ncl ude <PGS_AA. h>

#define ONEL3A 10952 /*Pernmanent |ogical ID for OAE v1. 3a*/
#define NPARMS 1 /* No. paraneters requested */

#define XDIM 2 /*Requested no.cells: faster changing direction*/
#define YDOM 3 /*Requested no.cells: slower changing direction*/
#define MAX_STRING 30 /* arbitrary */

char par nms[NPARMS] [MAX_STRI NG ;
PGSt _i nteger xstart;

PGSt _i nteger ystart;

PGSt _i nt eger version;

PGSt _i nt eger operation;

short results[YDM[XDIM; /* WARNING This data type nust be
identical to the cacheFormatl field in
the support file */

PGSt _SMF_st atus returnStatus;

/* Begin exanple */

/* Define paraneter nane desired
WARNI NG This string nust be

identical to the Toolkit parameter ID string field
in both the fornat file
and the index file entry */

strcpy(parns[0], "O sonWrl dEcosystensl. 3a");

/* Define corner of grid requested */

xstart = 205;

ystart = 102;

/* version corresponds to the version nunber in the
Process Control file entry for the nmin dataset
Usual value is 1 */

version = 1;

/* This argunent is reserved for future use */

operation = 0;

/* Call Toolkit function to find the category of the
given grid area */

returnStatus = PGS_AA 2DRead(parms, NPARMS, xstart, ystart,
XDIM YDIM OWEL13A, version, operation,
results);

/*
Matrix results now contains the val ues:

results[0][0] = 10
results[0][1] = 10
results[1][0] = O
results[1][1] = O
results[2][0] = O
results[2][1] = O

According to the G obal Ecosystens Database documentation, the val ue
10 denotes category "Forest/Field; Dry Evergreen

br oadl eaf woods", while 0 denotes category "Cceans, Seas".

*/

FORTRAN example:

| MPLI CI T NONE

I NCLUDE ' PGS_SMF. f'

| NCLUDE ' PGS_AA 10. f'
| NCLUDE ' PGS_PC 9. f*

I NTEGER pgs_aa_2dr ead

| NTEGER ONE13A

PARAMETER (ONE13A=10952) ! Permanent |ogical ID - OAE vl. 3a
I NTEGER NPARMS

PARAMETER (NPARMS=1) I No. paraneters requested

I NTEGER XDI M ! Requested no. cells in

PARAMETER (XDl M=2) ! faster changing direction

I NTEGER YDI M ! Requested no. cells in

PARAMETER (YDI M=3) ! sl ower changi ng direction

CHARACTER* 30 par ns(NPARMS)
I NTEGER xstart

I NTEGER ystart

I NTEGER ver si on

I NTEGER operation

C The data type of the results variable nust correspond to the
C cacheFormatl field in the support file as follows:

Cc

C cacheFormat 1 results

C short I NTEGER

C long | NTEGER

C fl oat REAL

C doubl e DOUBLE PRECI SI ON

I NTEGER results(XDIM (YD M
I NTEGER r et ur nst at us

Begi n exanpl e

Define paraneter nanme desired

WARNI NG This string nmust be
identical to the Toolkit paraneter ID string field in
in both the fornmat file
and the index file entry

0O0000 000

parnms(1) = 'd sonWrl dEcosyst ensl. 3a'

version corresponds to version nunber in the
Process Control file entry for the nain dataset
Usual value is 1

[eXeXe]

version =1
C Reserved for future use
operation = 0

C Call Toolkit function to find category of the
C given grid area

returnstatus = pgs_aa_2dread(parns, NPARMS, xstart, ystart,
. XDIM YDIM OWE13A, version, operation,

According to the @ obal Ecosystens Database docunentation, the
value 10 denotes category "Forest/Field; Dry Evergreen
br oadl eaf woods", while 0 denotes category "Cceans, Seas".

results)

C Matrix results now contains the followi ng elevations in nmeters:
Cresults(1l)(1) = 10
Cresults(2)(1) = 10
Cresults(1)(2) = 0
Cresults(2)(2) = 0
Cresults(1)(3) = 0
Cresults(2)(3) = 0

C

C

C

Notes:
Currently, the input 2D dataset must be in the equal angle (Platte Carre) map projection in order for this tool to read it.

The numbers XDIM and YDIM used for the dimensions of the input and output variables must be exactly equal to the 5th and 6th arguments in the
calling sequence of the Toolkit function.

https://newsroom.gsfc.nasa.gov/sdptoolkit/primer/aa_overview.html#SupportFile

The next-to-last argument in the calling sequence operation is called the user operation; it specifies what additional functions you wish to apply to the
data.
For this function, this item is reserved for future use.

Warning: Please make sure you have enough memory to access a given dataset. The Toolkit reads the entire dataset into memory at once. This may
result in slow or erratic performance on machines with low memory available.

Note that the dataset owel3a.img of this example is only 300 KB.

All other sample datasets supplied with the Toolkit are less than 5 MB, except etop05.dat, which is 19 MB.

The main dataset accessed in the example is owel3a.img. The format and support files for this dataset are owel3a.bfm and owel3aSupport respectiv
ely; they are nominally located in directory $PGSHOME/runtime, unless you directed otherwise at Toolkit installation.

We reproduce the latter two files here for reference.
See sec. 9.1.3.2, " Accessing your own rectangular gridded datasets" for explanation of the parameters.

Listing of File owel3a.bfm

OlsonWorldEcosystems1.3a 1 1 uchar 0

Li sting of File owel3aSupport

cacheFormatl = short cacheFormat2 = 0 cacheFormatBytes = 2 parmMemoryCache = 518400 dataType = short autoOperation = 9 fileMemoryCache
= 259200 maxLat = 90.0000 minLat = -90.0000 maxLong = 180.000 minLong = -180.000 xCells = 720 yCells = 360 zCells = 0

9.2.3PGS_AA_3DGEO

Short explanation of what it's for: Obtain data from a 3D rectangular gridded dataset for a given latitude and longitude.
This function is in file: $PGSSRC/AA/generic/PGS_AA_3DGEO.c and $PGSSRC/AA/generic/PGS_AA_3DGEOF.c
Examples:

Example uses the test data extracted from the NMC RUC dataset; this sample test dataset is supplied with the Toolkit.

Two parameters are extracted: Potential temperature profile and pressure profile at sigma level 1 (surface) in the test dataset.

Data are retrieved for 3 geographical locations.

C example:

#i ncl ude <PGS_AA. h>

#define NMC_RUC TEST 10972 /* Permanent logical ID for

NMC RUC test dataset */
#define NPARMS 2 /* No. paraneters requested */
#define NPTS 3 /* No. points requested */
#define MAX_STRING 30 /* arbitrary */

char par nms[NPARMS] [MAX_STRI NG ;
PGSt _doubl e | atitude[NPTS];
PGSt _doubl e | ongi t ude[NPTS] ;
PGSt _i nt eger sigma_l evel [NPTS];
PGSt _i nt eger version;

PGSt _i nt eger operation;

float results[NPTS][NPARMS]; /* WARNING This data type nust
be identical to the cacheFormatl field
in the support file */

PGSt _SMF_st at us returnStat us;
/* Begin exanple */

/* Define paraneter nanes desired
WARNI NG This string nust be
identical to the Toolkit parameter ID string field
in both the format file
and the index file entry */

strcpy(parms[0], "nntRucSigPot"); /* Potential Tenp profile */
strcpy(parnms[1], "nntRucSigPres"); /* Pressure profile */

latitude[0] = 22.875610;
| ongi tude[0] = -120.490300;
sigma_l evel [0] = 1; /* corresponds to sigma=1.0 -- surface */

latitude[1] = 52.488790;
| ongi tude[1] = -136. 454700;
sigma_level [1] = 1;

latitude[2] = 46.017130;
| ongi tude[2] = -60.828200;
sigma_level [2] = 1;

/* version corresponds to version nunber in the
Process Control file entry for the nmin dataset
Usual value is 1 */

version = 1;

/* Apply "nearest cell" operation for polar stereographic datasets
Al lows for uncertain boundary cal cul ations
Al so available is "nearest cell" operation for equal area

(Platte Carre) datasets (operation=1l) */
operation = 2;

/* Call Toolkit function to find pressure and potenti al
tenperature at the given |ocations */

returnStatus =PGS_AA 3DGEQ(par ns, NPARMS, |atitude, |ongitude,
sigme_| evel, NPTS, NMC_RUC _TEST, version, operation,

results);

/*
Matrix results now contains the val ues:
results[0][0] = 288.8 | Potential Tenperature in deg.K
results[0][1] = 101610.0 ! Pressure in Pa
results[1][0] = 275.7
resul ts[1][1] = 103040.0
results[2][0] = 259.0
resul ts[2][1] = 100560.0
*/
FORTRAN example:

I MPLI CI' T NONE

| NCLUDE ' PGS_SMF. f '
| NCLUDE ' PGS_AA 10. f'
I NCLUDE ' PGS_PC 9. f'

I NTEGER pgs_aa_3dgeo

I NTEGER NMC_RUC _TEST ! Permanent logical ID for
PARAMETER (NMC_RUC_TEST=10972) ! NMC RUC test dataset
| NTEGER NPARMS

PARAMETER (NPARMB=2) ! No. paraneters requested
I NTEGER NPTS
PARAMETER (NPTS=3) ! No. points requested

CHARACTER* 30 par s (NPARME)

DOUBLE PRECI SI ON | at i t ude(NPTS)
DOUBLE PRECI SI ON | ongi t ude(NPTS)
I NTEGER si gne_| evel (NPTS)

I NTEGER ver si on

| NTEGER operation

C The data type of the results variable nust correspond to the
C cacheFormatl field in the support file as follows:

C

C cacheFormat 1 results

C short I NTEGER

C long I NTEGER

C fl oat REAL

C doubl e DOUBLE PRECI SI ON

REAL resul t s(NPTS) (NPARVS)
| NTEGER r et urnst at us

Begi n exanpl e

Define paraneter nanes desired

WARNI NG This string nmust be
identical to the Toolkit paranmeter ID string field in
in both the fornmat file
and the index file entry

O0000 000

parnms(1) = 'nntRucSi gPot"' ! Potential Tenperature profile
parms(2) = 'nncRucSigPres’ | Pressure profile

latitude(1l) = 22.875610
I ongi tude(1l) = -120.490300
sigma_level (1) =1 ! corresponds to sigma=1.0 -- surface

latitude(2) = 52.488790
I ongi tude(2) = -136.454700
sigma_level (2) =1

latitude(3) = 46.017130
| ongi tude(3) = -60.828200
sigma_level (3) =1

version corresponds to version nunber in the
Process Control file entry for the nmain dataset
Usual value is 1

[eXeXe]

version =1

C Apply "nearest cell" operation for polar stereographic datasets
C Al ows for uncertain boundary cal cul ations

C Aso available is "nearest cell" operation for equal area

C (Platte Carre) datasets (operation=1) */

operation = 2

C Call Toolkit function to find pressure and potenti al
C tenperature at the given |locations
returnstatus = pgs_aa_3dgeo(parnms, NPARMS, |atitude,

I ongi tude, signa_level, NPTS, NMC_RUC TEST, version, operation,
results)

C Matrix results now contains the follow ng val ues:

Cresults(1l)(1) = 288.8 ! Potential Tenperature in deg.K

Cresults(1)(2) = 101610.0 ! Pressure in Pa

Cresults(2)(1) = 275.7

Cresults(2)(2) = 103040.0

Cresults(3)(1) = 259.0

Cresults(3)(2) = 100560.0

Notes:

Currently, the input 3D dataset must be in either the NMC RUC polar stereographic or the equal angle (Platte Carre) map projection in order for this
tool to read it.

The number NPTS used for the dimension of the input and output variables must be exactly equal to the 6th argument in the calling sequence of the
Toolkit function.

Grid input variable sigma_level is the sigma level above the earth's surface, where sigma is the ratio of pressure to surface pressure. In the NMC RUC
test dataset, 4 levels are provided: 1.0, 0.8, 0.6, and 0.4, in that order.

The next-to-last argument in the calling sequence operation is called the user operation; it specifies what additional functions you wish to apply to the
data.

For this function, the value 1, which denotes operation PGS_AA_NEAREST_CELL, is available for equal angle (Platte Carre) datasets; the valuse 2,
which denotes operation PGS_AA_OP_NINTCELL, is available for NMC RUC polar stereographic datasets.

Warning: Please make sure you have enough memory to access a given dataset. The Toolkit reads the entire dataset into memory at once. This may
result in slow or erratic performance on machines with low memory available.

Note that the dataset nmcRucPotPres.datrepack of this example is only 160 KB.

All other sample datasets supplied with the Toolkit are less than 5 MB, except etop05.dat, which is 19 MB.

The main dataset accessed in the example is nmcRucPotPres.datrepack

(nmcRucPotPres.datrepack_dec if you have a DEC workstation). The format and support files for this dataset are nmcRucSigPotPres.bfm and nmcRuc
Support respectively; they are nominally located in directory $PGSHOME/runtime, unless you directed otherwise at Toolkit installation. (Note that this
support file applies to both potential temperature and pressure variables.)

We reproduce the latter two files here for reference.

See sec. 9.1.3.2, " Accessing your own rectangular gridded datasets" for explanation of the parameters.

Listing of File nncRucSi gPot Pres. bf m
nmcRucSigPot 1 4 float 1 nmcRucSigPres 5 8 float 1

Note: A bug was discovered after the Toolkit package was delivered. The order of the parameters in the format file above were incorrectly reversed.
Please edit this file and reverse the order so that it looks like the above. Otherwise, the data returned will be reversed, i.e., the potential temperature
will be in the pressure position in your output variable and vice versa.

Listing of File nmcRucSupport

cacheFormatl = float cacheFormat2 = 1 cacheFormatBytes = 4 parmMemoryCache = 80352 dataType = float autoOperation = 2 fleMemoryCache =
160704 maxLat = 0.000 minLat = 0.000 maxLong = 0.000 minLong = 0.000 xCells = 81 yCells = 62 zCells = 4 lowerlLeftLat = 22.8756 lowerLeftLong =
239.5089 meshLength = 68153.0 gridOrientation = 255.0

9.2.4 PGS_AA_3DRead

Short explanation of what it's for: Obtain data from a 3D rectangular gridded dataset for a given grid area.
This function is in file: $PGSSRC/AA/generic/PGS_AA_3DRead.c and $PGSSRC/AA/generic/PGS_AA 3DReadF.c
Examples:

Example uses the test data extracted from the NMC RUC dataset; this sample test dataset is supplied with the Toolkit.
Two parameters are extracted: potential temperature profile and pressure profile.
Data are retrieved for a 2x3x2 cell block.

C example:
#i ncl ude <PGS_AA. h>

#define NMC_RUC TEST 10972 /* Permanent logical 1D for

NMC RUC test dataset */
#define NPARMS 2 /* No. paraneters requested */
#define XDIM 2 /*Requested no.cells: fastest changing direction*/
#define YDIM 3 /*Requested no.cells: niddl e changing direction*/
#define ZDIM 2 /*Requested no.cells: slowest changing direction*/
#define MAX_STRING 30 /* arbitrary */

char par ms[NPARMS] [MAX_STRI NG ;
PGSt _i nteger xstart;

PGSt _i nteger ystart;

PGSt _i nt eger zstart;

PGSt _i nt eger version;

PGSt _i nt eger operation;

/* WARNING The data type of matrix results
nmust be identical to the cacheFornmatl field in
the support file */

float results[ZDIM[YD M [XD M [NPARMS] ;

PGSt _SMF_st atus returnStatus;

/* Begin exanple */

/* Define paraneter nanes desired
WARNI NG This string nust be
to the Tool kit paraneter

i denti cal

in both the format file

and the index file entry */

strcpy(parns[O0],
strcpy(parns[1],

/* Defi

xstart = 30;
ystart = 20;
zstart = 2;

"nncRucSigPot"); /*
"nncRucSi gPres”);

Pot ent i al

ne corner of grid block requested */

ID string field

Temp profile */

/* version corresponds to the version nunber in the

Process Control
Usual

version = 1;
[* This argunent
operation = 0;

/* Call

Tool kit function to find the potential

is reserved for future use */

file entry for the main dataset
value is 1 */

and pressure profiles for the given grid block */

returnStatus =

ver si on,

PGS_AA_3DRead(parnms, NPARMS,
XDiM YDIM ZDI'M
operation,

zstart,

Pot ent i al
Pressure in Pa

xstart, ystart,

NMC_RUC_TEST,

results)
/ *
Matrix results now contains the val ues
(signa level 1.0 -- surface)
results[0][0][0][0] = 302.6
results[0][0][0][1] = 76830.0
results[0][0][1][0] = 303.2
results[0][0][1][1] = 77390.0
results[0][1][0][0] = 302.3
resul ts[0][1][0][1] = 76750.0
results[O][1][1][0] = 302.8
resul ts[0][1][1][1] = 77580.0
results[0][2][0][0] = 303.2
results[0][2][0][1] = 75020.0
results[0][2][1][0] = 303.7
results[0][2][1][1] = 75540.0
(sigma |l evel 0.8)
results[1][0][0][0] = 303.9
results[1][0][0][1] = 73830.0
results[1][0][1][0] = 304.4
resul ts[1][0][1][1] = 74390.0
results[1][1][0][0] = 303.7
results[1][1][0][1] = 73750.0
results[1][1][1][0] = 304.3
resul ts[1][1][1][1] = 74580.0
results[1][2][0][0] = 304.0
results[1][2][0][1] = 72020.0
resul ts[1][2][1][0] = 304.6
results[1][2][1][1] = 72540.0
*/

FORTRAN example:
I MPLICI T NONE

I NCLUDE ' PGS_SMF. f'
| NCLUDE ' PGS_AA 10. f'
| NCLUDE ' PGS_PC 9. f*

I NTEGER pgs_aa_3dr ead

I NTEGER NMC_RUC_TEST

/* Pressure profile */

tenperature

Tenperature in deg. K

I Per manent

logical ID for

PARAMETER (NMC_RUC TEST=10972) ! NMC RUC test dataset
| NTEGER NPARMS
PARAMETER (NPARMVS=2) ! No. paraneters requested

I NTEGER XDI M ! Requested no. cells in
PARAMETER (XDI M=2) ! fastest changing direction
I NTEGER YDI M ! Requested no. cells in
PARAMETER (YDI M=3) ! m ddl e changi ng direction
I NTEGER ZDI M ! Requested no. cells in
PARAMETER (ZDl M=2) ! sl owest changi ng direction

CHARACTER* 30 par ns(NPARVS)
I NTEGER xst art

I NTEGER ystart

I NTEGER zstart

| NTEGER ver si on

I NTEGER operation

C The data type of the results variable nust correspond to the

C cacheFormatl field in the support file as follows:
C

C cacheFor mat 1 results

C short | NTEGER

C long | NTEGER

C fl oat REAL

C doubl e DOUBLE PRECI SI ON

REAL resul ts(XDI M (YD M (ZDl M (NPARMS)

I NTEGER r et ur nst at us

C

C Begi n exanpl e

C

C Define paraneter nanes desired

C WARNING This string nmust be

C identical to the Toolkit paraneter ID string field in

C in both the format file

C and the index file entry
parns(1l) = 'nncRucSigPot' ! Potential Tenperature profile
parnms(2) = 'nntRucSigPres' ! Pressure profile

C version corresponds to version nunber in the

C Process Control file entry for the main dataset

C Usual value is 1

version =1
C Reserved for future use
operation = 0
C Call Toolkit function to find the potential tenperature

C and pressure profiles for the given grid block

returnstatus = pgs_aa_3dread(parnms, NPARMS,

. xstart, ystart, zstart, XDOM YDIM ZD'M
NMC_RUC_TEST, version, operation,
results)

C Matrix results now contains the follow ng val ues:

C (signa level 1.0 -- surface)
Cresults(1)(1)(1)(1) = 302.6 ! Potential Tenperature in deg.K
Cresults(1)(1)(1)(2) = 76830.0 ! Pressure in Pa
Cresults(1)(1)(2)(1) = 303.2
Cresults(1)(1)(2)(2) = 77390.0
Cresults(1)(2)(1)(1) = 302.3
Cresults(1)(2)(1)(2) = 76750.0
Cresults(1)(2)(2)(1) = 302.8
Cresults(1)(2)(2)(2) = 77580.0
Cresults(1)(3)(1)(1) = 303.2
Cresults(1)(3)(1)(2) = 75020.0
Cresults(1)(3)(2)(1) = 303.7
Cresults(1)(3)(2)(2) = 75540.0

(@]

(sigma | evel 0.8)

Cresults(2)(1)(1)(1) = 303.9
Cresults(2)(1)(1)(2) = 73830.0
Cresults(2)(1)(2)(1) = 304.4
Cresults(2)(1)(2)(2) = 74390.0
Cresults(2)(2)(1)(1) = 303.7
Cresults(2)(2)(1)(2) = 73750.0
Cresults(2)(2)(2)(1) = 304.3
Cresults(2)(2)(2)(2) = 74580.0
Cresults(2)(3)(1)(1) = 304.0
Cresults(2)(3)(1)(2) = 72020.0
Cresults(2)(3)(2)(1) = 304.6
Cresults(2)(3)(2)(2) = 72540.0

Notes:

Currently, the input 3D dataset must be in either the NMC RUC polar stereographic or the equal angle (Platte Carre) map projection in order for this
tool to read it.

The numbers XDIM, YDIM and ZDIM used for the dimensions of the input and output variables must be exactly equal to the 6th, 7th and 8th
arguments in the calling sequence of the Toolkit function.

The next-to-last argument in the calling sequence operation is called the user operation; it specifies what additional functions you wish to apply to the
data.
For this function, this item is reserved for future use.

Grid input variable sigma_level is the sigma level above the earth's surface, where sigma is the ratio of pressure to surface pressure. In the NMC RUC
test dataset, 4 levels are provided: 1.0, 0.8, 0.6, and 0.4, in that order.

Warning: Please make sure you have enough memory to access a given dataset. The Toolkit reads the entire dataset into memory at once. This may
result in slow or erratic performance on machines with low memory available.

Note that the dataset nmcRucPotPres.datrepack of this example is only 160 KB.

All other sample datasets supplied with the Toolkit are less than 5 MB, except etop05.dat, which is 19 MB.

The main dataset accessed in the example is nmcRucPotPres.datrepack

(nmcRucPotPres.datrepack_dec if you have a DEC workstation). The format and support files for this dataset are nmcRucSigPotPres.bfm and nmcRuc
Support respectively; they are nominally located in directory $SPGSHOME/runtime, unless you directed otherwise at Toolkit installation. (Note that this
support file applies to both potential temperature and pressure variables.)

We reproduce the latter two files here for reference.
See sec. 9.1.3.2, " Accessing your own rectangular gridded datasets" for explanation of the parameters.

Listing of File nntRucSi gPot Pres. bf m
nmcRucSigPot 1 4 float 1 nmcRucSigPres 5 8 float 1
Note: A bug was discovered after the Toolkit package was delivered. The order of the parameters in the format file above were incorrectly reversed.

Please edit this file and reverse the order so that it looks like the above. Otherwise, the data returned will be reversed, i.e., the potential temperature
will be in the pressure position in your output variable and vice versa.

Listing of File nnctRucSupport
cacheFormatl = float cacheFormat2 = 1 cacheFormatBytes = 4 parmMemoryCache = 80352 dataType = float autoOperation = 2 fleMemoryCache =

160704 maxLat = 0.000 minLat = 0.000 maxLong = 0.000 minLong = 0.000 xCells = 81 yCells = 62 zCells = 4 lowerlLeftLat = 22.8756 lowerLeftLong =
239.5089 meshLength = 68153.0 gridOrientation = 255.0

9.2.5 PGS_AA_DEM

Short explanation of what it's for: Obtain data from a tiled 2D rectangular gridded dataset for a given latitude and longitude.
By 'tiled' is meant a dataset which is broken into more than one physical file. Primary use of this tool is for large digital elevation model (DEM) datasets.

This function is in file: $PGSSRC/AA/generic/PGS_AA_DEM.c and $PGSSRC/AA/generic/PGS_AA_DEMF.c
Examples:

Example uses the DMA Conterminous USA dataset supplied with the Toolkit. Data is retrieved for 3 geographical locations.

C example:

#i ncl ude <PGS_AA. h>

#define DVA 10780 /*Permanent |ogical ID for DVA dataset*/
#define NPARMS 1 /* No. paraneters requested */
#define NPTS 3 /* No. points requested */

#define MAX_STRING 30 /* arbitrary */

char par ns[NPARVS] [MAX_STRI NG ;
PGSt _doubl e | atitude[NPTS];
PGSt _doubl e | ongi t ude[NPTS] ;
PGSt _i nt eger versionFl ag[NPTS] ;
PGSt _i nt eger operation;

short results[NPTS]; /* WARNING This data type nust be
identical to the cacheFormatl field
in the support file */

PGSt _SMF_st at us returnStat us;
/* Begin exanple */

/* Define paranmeter nane desired
WARNI NG This string nust be
identical to the Toolkit paraneter ID string field
in both the format file
and the index file entry;
for tiled data sets, the nunerical suffix is onitted
inthis string. */

strcpy(parms[0], "usadreel evation");

latitude[0] = 39.0;
| ongi tude[0] = -77.0;

latitude[1] = 39.0;
| ongi tude[1] = -106.0;

latitude[2] = 48.0;
| ongi tude[2] = 0.0;

/* Apply "nearest cell" operation; finds result at cell center
(Currently this is the only allowed value for 2D datasets) */

operation = 1;
/* Call Toolkit function to find elevations at given |ats/|ongs*/

returnStatus = PGS_AA DEM parns, NPARMS, |atitude,
| ongi tude, versionFlag, NPTS, DMA, operation,

results);
/*
Array results now contains the followi ng elevations in neters:
results[0] = 85
results[1] = 2829
results[2] = 0

Array versionFlag now contains the foll owi ng val ues:

ver si onFl ag[0] 7 ! Point was found in file usatile7

ver si onFl ag[1] 6 ! Point was found in file usatile6

ver si onFl ag[2] PGSd_AA_QUT_OF_RANGE ! Point was not found in
the DVA DEM data set

*/

FORTRAN example:

| MPLI CI T NONE

I NCLUDE ' PGS_SMF. f'

| NCLUDE ' PGS_AA 10. f'
| NCLUDE ' PGS_PC 9. f*

| NTEGER pgs_aa_dem
| NTEGER DVA

PARAMETER (DMA=10780) ! Permanent |ogical |1D for DVA
| NTEGER NPARMS

PARAMETER (NPARMS=1) I No. paraneters requested
I NTEGER NPTS
PARAMETER (NPTS=3) ! No. points requested

CHARACTER* 30 par ms(NPARVS)

DOUBLE PRECI SI ON | at i t ude(NPTS)
DOUBLE PRECI SI ON | ongi t ude(NPTS)
I NTEGER ver si onf | ag(NPTS)

| NTEGER operation

C The data type of the results variable nust correspond to the
C cacheFormatl field in the support file as foll ows:

C

C cacheFormat 1 results

C short | NTEGER

C long | NTEGER

C float REAL

C doubl e DOUBLE PRECI SI ON

I NTEGER r esul t s(NPTS)

I NTEGER r et ur nst at us

C
C Begi n exanpl e
Cc
C Define paraneter nanme desired
C WARNING This string nust be
C identical to the Toolkit paraneter ID string field in
C in both the fornmat file
C and the index file entry;
C for tiled data sets, the nunerical suffix is omtted
C in this string.
parms(1) = 'usadnmel evation'
latitude(l) = 39.0
I ongi tude(1) = -77.0
latitude(2) = 39.0
I ongi tude(2) = -106.0
latitude(3) = 48.0
| ongitude(3) = 0.0
C Apply "nearest cell" operation; finds result at cell center

C (Currently this is the only allowed value for 2D datasets)
operation = 1
C Call Toolkit function to find el evations at given |ats/|ongs

returnstatus = pgs_aa_den(parns, NPARMS, |atitude,
| ongi tude, versionflag, NPTS, DVA, operation,

results)
C Array results now contains the follow ng elevations in neters:
Cresults(1l) = 85
Cresults(2) = 2829
Cresults(3) = 0
C Array versionFlag now contains the follow ng val ues:
C versionFlag(1l) = 7 ! Point was found in file usatile7
CversionFlag(2) = 6 ! Point was found in file usatile6
C versionFlag(3) = PGSd_AA QUT_OF RANGE ! Point was not found in

the DVA DEM data set
Notes:

This function is essentially a wrapper on PGS_AA_2DGEO; the added functionality in this tool is that the data set may consist of more than one
physical file.

https://newsroom.gsfc.nasa.gov/sdptoolkit/primer/aa_overview.html#SupportFile

This tool may be used to access data sets other than DEMSs, if the user so desires.
Currently, the input 2D dataset must be in the equal angle (Platte Carre) map projection in order for this tool to read it.

The number NPTS used for the dimension of the input and output variables must be exactly equal to the 6th argument in the calling sequence of the
Toolkit function.

The next-to-last argument in the calling sequence operation is called the user operation; it specifies what additional functions you wish to apply to the
data.
For this function, the value 1, which denotes operation PGS_AA_NEAREST_CELL, is currently the only available option.

Warning: Please make sure you have enough memory to access a given dataset. The Toolkit reads the entire dataset into memory at once. This may
result in slow or erratic performance on machines with low memory available.

All of the tiled DEM datasets supplied with the Toolkit are less than 5 MB.

The full (untiled) TerrainBase DEM, file thase.bin, is 19 MB.

The main dataset accessed in the example is one of the family usatile#, where # = 1 to 12. The corresponding format and support files for this dataset
are usatile#.bfm and usatile#Support respectively; they are nominally located in directory $SPGSHOME/runtime, unless you directed otherwise at
Toolkit installation.

For reference, we reproduce here an example of these files, viz. usatile3.bfm and usatile3Support.
See sec. 9.1.3.2, " Accessing your own rectangular gridded datasets" for explanation of the parameters.

Listing of File usatile3.bfm

usadmaelevation3 1 2 short 0

Listing of File usatile3Support

cacheFormatl = short cacheFormat2 = 0 cacheFormatBytes = 2 parmMemoryCache = 4406400 dataType = short autoOperation = 9
fileMemoryCache = 4406400 maxLat = 51.000 minLat = 42.000 maxLong = -77.000 minLong = -94.000 xCells = 2040 yCells = 1080 zCells = 0

9.2.6 PGS_AA_DCW

Short explanation of what it's for: Obtain land/sea/ice flag from the Digital Chart of the World (DCW) dataset for a given latitude and longitude.
This function is in file: $PGSSRC/AA/DCW/PGS_AA_DCW.c

Examples:

Land/sealice flag is retrieved for 4 geographical locations.

C example:

#i ncl ude <PGS_AA. h>
#define NPARMS 1 /* Currently only possible value */

char par ns[NPARVS] [MAX_STRI NG ;
PGSt _doubl e | atitude[4];

PGSt _doubl e | ongi tude[4] ;

PGSt _i nt eger npts;

PGSt _i nt eger results[4];
PGSt _SMF_st atus returnStatus;
/* Begin exanple */

/* Define paraneter nane desired; currently
"po" ("political/oceans") is the only one allowed

strcpy(parns[0], "po");
latitude[0] = 70.0;
| ongi tude[0] = 120.0;

latitude[1] = 50.0;
| ongi tude[1] = -20.0;

latitude[2] = 85.55;
| ongi tude[2] = 73.383;

latitude[3] = -69.22;
| ongi tude[3] = 30. 45;

npts = 4,

/* Call Toolkit function to find |and/sea/ice flags
at given lats/longs */

returnStatus = PGS_AA DCW parns, NPARMS, | ongitude,
latitude, npts, results);

/*
Array results now contains the follow ng val ues:
results[0] =
resul ts[1]
resul ts[2]
resul ts[3]

(I I |
ArwWN PR

Key to the returned val ues:

Val ue = Surface Cover
No Data From DCW data base
Land
Open Ccean
Pol ar Ice
Pack I ce
Shel f Ice

*/

FORTRAN example:

I MPLI CI' T NONE

I NCLUDE ' PGS_SMF. f'

I NCLUDE ' PGS_AA 10.f"
I NCLUDE ' PGS_PC 9. f'
I NTEGER pgs_aa_dcw

| NTEGER NPARMS
PARAMETER (NPARMS=1) ! No. paraneters requested

CHARACTER* 30 par s (NPARVB)
DOUBLE PRECI SION | atitude(4)
DOUBLE PRECI SI ON | ongi t ude(4)
I NTEGER NPTS

| NTEGER resul ts(4)

I NTEGER r et ur nst at us

Cc
C Begi n exanpl e
C
C Define paraneter nane desired; currently
C 'po' ("political/oceans") is the only one allowed
parns(1) = 'po'
latitude(l) = 70.0
| ongi tude(1) = 120.0
latitude(2) = 50.0
| ongi tude(2) = -20.0
latitude(3) = 85.55
I ongi tude(3) = 73.33
latitude(4) = -69.22
| ongi tude(4) = 30.45
npts = 4
C Call Toolkit function to find | and/seal/ice flags
C at given |ats/longs

returnstatus = pgs_aa_dcw(parnms, NPARMS, |ongitude,
latitude, npts, results)

C Array results now contains the followi ng elevations in neters:
Cresults(l) =1

Cresults(2) =2

Cresults(3) =3

Cresults(4) =4

C Key to the returned val ues:

C Val ue = Sur face Cover

C a---- e e e e e e e a

C -1 = No Data From DCW data base
C 1 = Land

C 2 = Open Ccean

C 3 = Polar |ce

C 4 = Pack Ice

C 5 = Shel f Ice

Notes:
It is much more efficient to call this tool for an array of input values, than to call it for one value at a time in a loop.
As this is an old (1991 or earlier) dataset, ice values are for illustrative purposes only.

See sec. 9.1.2, "Accessing vector format data" for more details about DCW.

9.2.7 PGS_AA_PeV*
Short explanation of what they're for: Obtain data from an ASCII (text) dataset in PARAMETER=value (PeV) format.

This description covers 3 tools: PGS_AA_PeV_string, PGS_AA_PeV_real, and PGS_AA_PeV_integer. These functions essentially do the same thing;
they vary in the data type of the returned value.

These functions are in file: $PGSSRC/AA/generic/PGS_AA_PeV.c

Examples:

Example uses the OlsonWorldEcosystems v1.3a Support file dataset supplied with the Toolkit. This file actually contains metadata for the
OlsonWorldEcosystems data; here we show how this tool retrieves data directly from it.

(This is done internally by Toolkit functions that access gridded rectangular data.)

A listing of this file appears in the Notes.

The intended use of these functions in science software is not to read metadata, but to read main ancillary datasets, as long as they are ASCII (text)
files in PARAMETER=value format.

C example:

#i ncl ude <PGS_AA. h>

#defi ne OANEL3A_SUPPORT 10902 /*ID for OWE v1.3a Support file*/
#define MAX_PARM STRING 30 /* arbitrary */

#define MAX_VAL_STRING 100 /* arbitrary */

char paranet er [MAX_PARM STRI NG ;

char val ue_s[MAX_VAL_STRI NG ;

PGSt _doubl e val ue_d;

PGSt _i nt eger val ue_i;

PGSt _SMF_st at us returnStat us;

/* Begin exanple */

[***Exxx* CGet a string value fromthe file ***xxxxx/
/* Define paraneter name desired */

strcpy(paraneter, "cacheFormatl");

/* Call Toolkit function to find the value of this
parameter in the OAE vl1.3a Support file */

returnStatus = PGS_AA PeV_string(OAE13A_SUPPORT, paraneter,

val ue_s);
/*
Vari abl e val ue_s now contains the value "short"
*/

[*xxxxxx Get a real value fromthe file ******x/
/* Define paraneter name desired */
strcpy(paraneter, "maxLat");

/* Call Toolkit function to find the value of this
paranmeter in the OAE v1.3a Support file */

returnStatus = PGS_AA PeV_real (OAE13A SUPPORT, paraneter,

&value_d);
/*
Vari abl e val ue_d now contains the value 90.0
*/

[*****%* Get an integer value fromthe file **xx*x*x%/
/* Define paraneter nanme desired */
strcpy(paraneter, "parnMvenoryCache");

/* Call Toolkit function to find the value of this
paranmeter in the OAE v1.3a Support file */

returnStatus = PGS_AA PeV_integer(OAE13A SUPPORT, paraneter,

&value_i);
/*
Vari abl e value_i now contains the val ue 518400
*/

FORTRAN example:

I MPLI CI' T NONE
I NCLUDE ' PGS_AA. f'
I NCLUDE ' PGS_AA_10. f'
I NCLUDE ' PGS_SMF. f'
I NTEGER pgs_aa_pev
I NTEGER OVE13A_SUPPORT
PARAMETER (ONE13A_SUPPORT=10902) ! I D for OWE vl1.3a
! Support file
CHARACTER* 30 par manet er
CHARACTER* 100 val ue_s
DOUBLE PRECI SI ON val ue_d
I NTEGER val ue_i
I NTEGER r et ur nst at us
C
C Begi n exanpl e
C
Crxxxxxx Get a string value fromthe file **x**x*%
C Define paraneter nane desired
paraneter = 'cacheFormat1'

C Call Toolkit function to find the value of this
C paranmeter in the OAE v1.3a Support file

returnstatus = pgs_aa_pev_string(OAEL13A SUPPORT, paraneter,
. val ue_s)

C Vari abl e val ue_s now contains the value 'short’

Crx*xxxxx Get a real value fromthe file ****xxxx
C Define paraneter name desired
parameter = 'maxlLat'

C Call Toolkit function to find the value of this
C paranmeter in the OMNE v1.3a Support file

returnstatus = pgs_aa_pev_real (OAE13A_SUPPORT, paraneter,
. val ue_d)

C Vari abl e val ue_d now contains the value 90.0

Cr***x*xxx Get an integer value fromthe file **xx**x*
paranmeter = ' parnmvenoryCache'

C Call Toolkit function to find the value of this
C paranmeter in the OAE v1.3a Support file

returnstatus = pgs_aa_pev_i nteger(OWAEL13A SUPPORT, paraneter,
. value_i)

C Variabl e val ue_i now contains the val ue 518400

Notes:

For a description of how the Process Control file is used (here by passing mnemonic OWE13A_SUPPORT), see sec 4.1.2, Constructing your Process
Control file.

Listing of File owel3aSupport

cacheFormatl = short cacheFormat2 = 0 cacheFormatBytes = 2 parmMemoryCache = 518400 dataType = short autoOperation = 9 fileMemoryCache
= 259200 maxLat = 90.0000 minLat = -90.0000 maxLong = 180.000 minLong = -180.000 xCells = 720 yCells = 360 zCells = 0

10. Celestial Body Position (CBP) Tools

10.1 Celestial Body Position (CBP) Tools Overview

This section covers utilities you may use to obtain information about celestial bodies, including the Sun, Moon and planets. These tools are optional.
Tool PGS_CBP_body_inFOV determines whether the Sun, the Moon, a planet or a star is within the given field-of-view.

Tool PGS_CBP_Earth_CB_Vector determines the vector from the earth to a celestial body in the Earth-Centered Inertial (ECI) reference frame.
Tool PGS_CBP_Sat_CB_Vector calculates the vector in the spacecraft reference frame from the satellite to a celestial body.

Tool PGS_CBP_SolarTimeCoords computes various types of solar times, and also the Sun's position (right ascension and declination).
Solar times returned include:

Greenwich Mean Solar TimeTime based on the mean sun being overhead at noon at 0 deg. longitude (Greenwich). The fictitious mean Sun moves
along the celestial equator at a constant rate of one revolution per year.Local Mean Solar TimeThis time is Greenwich Mean Solar Time adjusted for
the longitude of observation, at one hour per 15 degrees.Local Apparent Solar TimeBased on the diurnal motion of the true Sun, whose rate varies
seasonally due to the tilt of the earth's axis and the eccentricity of its orbit. Maximum annual difference with Local Mean Solar Time is 16 minutes.
Adjusted for longitude of observation at one hour per 15 degrees.

All times are returned as seconds since midnight.

For brief descriptions of the ECI and spacecraft reference frames, see sec. 11.1, Coordinate Systems Conversion (CSC) Tools Overview.

All 4 tools use time in CCSDS ASCII Time Code format as one of their inputs. See section 8.1.2, "Definition of Time Scales and Formats Used", under
the "UTC:Universal Coordinated Time" entry, for details of this format.

Information about the theoretical basis of these tools is available. If you are interested, please write to sdps-support@earthdata.nasa.gov.

10.2.2 PGS _CBP_Earth_CB_Vector

This section contains an alphabetical listing of the descriptions of the individual PGS_CBP_* tools.

10.2.1 PGS_CBP_body_inFOV

Short explanation of what it's for: Determine whether any part of a given celestial body is within the field-of-view (FOV), and return the S/C frame
vector to that point.

This function is in file: $PGSSRC/CSC/PGS_CBP_body_inFOV.c
Examples:
It is determined whether the Moon is within the LIS instrument FOV, at a single time.

C example:
#i ncl ude <PGS_CBP. h>

PGSt _i nt eger nTi mePts;

char ascii UTC_ Al 28];

PGSt _doubl e tinme_offset[1];

PGSt _tag spacecraftlD;

PGSt _i nt eger nunfFovPerim

PGSt _doubl e fov_inside_vector[1][
PGSt _doubl e fov_perimvector[1][4
PGSt _i nteger cb_id;

PGSt _doubl e dunmmy[1][3];

3]
1031

PGSt _bool ean bodyl nFov_f 1l ag[1] ;
PGSt _doubl e sc_body_vector[1][3];

PGSt _SMF_st atus returnStatus;
/* Begin exanple */

/* Define base tinme and offsets desired.
Base time is given in CCSDS ASCI| Tine code A fornat;
CCSDS ASCII Time code B format is also allowed.
O fsets are in seconds.
O fsets are useful if you want to determ ne whether a
given point is in the FOV over sone tinme interval.
Here we process for a single time. */

nTimePts = 1;
strcpy(ascii UTC_A, "1998-06-30T10: 51: 28. 320000Z2") ;
tine_offset[0] = 0.0;

/* Assign spacecraft ID tag
PGSd_ECS_AM and PGSd_EOS PM are al so all owed */

spacecraft| D = PGSd_TRWM

mailto:sdps-support@earthdata.nasa.gov

/* Fill S/IC frame vectors that define the field-of-view
Al'so supply a single arbitrary vector that is inside the FOV. */

nunfFovPerim = 4;

fov_perimvector[0][0][0] = -0.534711; /* S/C franme X conponent */
fov_perimuvector[0][0][1] = 0.534711; /* S/C frame Y conponent */
fov_perimvector[0][0][2] = 0.654345; /* S/C frame Z conponent */
fov_perimvector[0][1][0] = -0.534711;

fov_perimuvector[0][1][1] = -0.534711;

fov_perimuvector[0][1][2] = 0.654345;

fov_perimvector[0][2][0] = 0.534711;

fov_perimvector[0][2][1] = -0.534711;

fov_perimuvector[0][2][2] = 0.654345;

fov_perimvector[0][3][0] = 0.534711;

fov_perimvector[0][3][1] = 0.534711;

fov_perimuvector[0][3][2] = 0.654345;

fov_inside_vector[0][0] = 0.0;

fov_inside_vector[0][1] = 0.0;

fov_inside_vector[0][2] = 0.654345;

/* Define the celestial body for which you want to determ ne
whether it is in the FOV */

cb_id = PGSd_MOON;

/* Determ ne whether the Moon is in the FOV */

returnStatus = PGS_CBP_body_i nFOV(nTi mePts, ascii UTC_A,
tine_offset, spacecraftlD, nunfFovPerim
fov_inside_vector, fov_perimuvector, cb_id,
bodyl nFov_fl ag, dummy, sc_body_vector);

/* See the notes regarding "dummy".

The followi ng val ues are returned:

Flag that indicates if the celestial body is within the FOV

bodyl nFov_flag[0] = PGS_FALSE

Vector fromS/Cto Mon in S/C frane coords (neters)

-350156024. 261 X coordi nate
-150805330. 668 Y coordinate
130891208. 962 Z coordinate

sc_body_vector[0, 0]
sc_body_vector[0, 1]
sc_body_vector[0, 2]

*/
FORTRAN example:

I MPLICI' T NONE
I NCLUDE '
I NCLUDE '
I NCLUDE '
I NCLUDE ' PGS_EPH !
I NCLUDE '
I NCLUDE '
I NCLUDE '

I NTEGER pgs_csc_body_i nf ov

I NTEGER nti nepts

CHARACTER* 27 asciiutc_a

DOUBLE PRECI SI ON ti me_of f set (1)

| NTEGER spacecraftid

I NTEGER nunf ovperim

DOUBLE PRECI SI ON fov_i nsi de_vector (3, 1)
DOUBLE PRECI SI ON fov_peri mvector(3,4,1)
| NTEGER cb_i d

DOUBLE PRECI SI ON dumy(3, 1)

I NTEGER bodyi nf ov_f 1 ag(1)
DOUBLE PRECI SI ON sc_body_vector (3, 1)

I NTEGER r et ur nst at us

https://newsroom.gsfc.nasa.gov/sdptoolkit/primer/cbp_body_inFOV.html#Notes

Begi n exanpl e

Define base tine and offsets desired.

Base time is given in CCSDS ASCI| Tinme code A format;
CCSDS ASCII Time code B format is also allowed.
Offsets are in seconds.

O fsets are useful if you want to determ ne whether a
given point is in the FOV over sone tinme interval.
Here we process for a single tinme.

ntinepts = 1
asciiutc_a = '1998-06-30T10: 51: 28. 3200002
tinme_offset(1l) = 0.0

! Assign spacecraft ID tag
! PGSd_ECS_AM and PGSd_EOCS PM are al so al | oned

spacecraftid = PGSd_TRW

! Fill S/ICfrane vectors that define the field-of-view

! Also supply a single arbitrary vector that is inside the FOV.
fov_perimuvector(1,1,1)

fov_perimuvector(2,1,1)
fov_perimuvector(3,1,1)

-0.534711 ! S/C frane X pos
.534711 ! S/C frame Y pos
0.654345 ! S/C frane Z pos

o
o

fov_perimuyvector(1,2,1) = -0.534711
fov_perimuvector(2,2,1) = -0.534711
fov_perimuyvector(3,2,1) = 0.654345
fov_perimuvector(1,3,1) = 0.534711
fov_perimuvector(2,3,1) = -0.534711
fov_perimuvector(3,3,1) = 0.654345
fov_perimuvector(1,4,1) = 0.534711
fov_perimuvector(2,4,1) = 0.534711
fov_perimvector(3,4,1) = 0.654345
fov_inside_vector(1,1) = 0.0
fov_inside_vector(2,1) = 0.0
fov_inside_vector(3,1) = 0.654345

! Define the celestial body for which you want to determ ne
! whether it is in the FOV

cb_id = PGSd_MOON
! Determ ne whether the first point is in the FOV

returnstatus = pgs_csc_body_infov(ntinepts, asciiutc_a,

+ time_of fset, spacecraftid, nunfovperim
+ fov_inside_vector, fov_perimyvector,
+ bodyi nfov_fl ag, dummy, sc_body_vector)

! See the notes regarding "dunmmy".

! The followi ng values are returned:

! Flag that indicates if the celestial body is within the FOV

! bodyl nFov_flag(1l) = PGS_FALSE

! Vector fromS/Cto Mon in S/C frane coords (neters)

! sc_body_vector(1,1) = -350156024.261 X coordinate

! sc_body_vector(2,1) = -150805330.668 Y coordinate

! sc_body_vector(3,1) = 130891208.962 Z coordinate

Notes:

Below is a list of valid values for the 8th argument to this tool, the celestial body identifier cb_id. The mnemonic PGSd_MOON is used in the example;
you may also use the numerical value (here 10), which may be useful to construct loops. These values are defined in file $PGSINC/PGS_CBP.h and $

PGSINC/PGS_CBP.f. In the table, SSBARY denotes the solar system barycenter, and EMBARY denotes the barycenter of the Earth-Moon system. ST
AR denotes any point object.

https://newsroom.gsfc.nasa.gov/sdptoolkit/primer/cbp_body_inFOV.html#Notes

Cel estial Body ldentifiers

1 = PGSd_MERCURY 8 = PGSd_NEPTUNE
2 = PGSd_VENUS 9 = PGSd_PLUTO
3 = [unused] 10 = PGSd_MOON

4 = PGSd_MARS 11 = PGSd_SUN

5 = PGSd_JUPI TER 12 = [unused]

6 = PGSd_SATURN 13 = [unused]

7 = PGSd_URANUS 999 = PGSd_STAR

The 10th argument of this tool dummy is ignored, unless the 8th argument cb_id is PGSd_STAR. In that case, the ECI vector to a point celestial body
(e.g., a star) must be supplied in input variable dummy.

The finite sizes of all celestial objects (except PGSd_STAR) including satellites down to the 10th magnitude are taken into account by this function.
If errors in processing occur, the value PGSd_GEO_ERROR_VALUE is returned in the corresponding element of array sc_body_vector.

The number of points defining the FOV perimeter numFovPerim must be at least 3.
The perimeter vector points must be sequential around the FOV perimeter.

Files:

This tool accesses the following files:
leap seconds

polar motion and UT1-UTC

JPL planetary ephemeris

L]
L]
L]
® spacecraft ephemeris/attitude

The physical references to these files are defined in the Process Control File (PCF) template supplied with the Toolkit, SPGSRUN/PCF.v5. If you are
using a PCF derived from that template, you need not do anything extra, to enable access to these files.

See sec. 3.1.2, Constructing your Process Control file, for information about PCF entries.

The exception is the spacecraft ephemeris/attitude file, which must be created by you for testing purposes at the SCF. Simulated files may be
prepared through use of the orbsim utility; (sec. 7.1.2.1); alternatively, you may prepare them yourself (sec. 7.1.2.2).

This file must follow the ephemeris file naming convention, and must reside in directory $PGSLIB/database/EPH. This directory is specified in $PGSR
UN/PCEF.v5; individual spacecraft ephemeris/attitude filenames are not entered in the PCF.

10.2.2 PGS_CBP_Earth_CB_Vector

Short explanation of what it's for: Retrieve the ECI vector from the Earth to the Sun, the Moon or a planet for a given time or array of times.
This function is in file: $PGSSRC/CBP/PGS_CBP_Earth_CB_Vector.c

Examples:

ECI vector to Neptune is retrieved for 2 different times.

C example:

#i ncl ude <PGS_CBP. h>

PGSt _i nt eger npts;

char ascii UTC_B[26] ;

PGSt _doubl e time_offset[2];
PGSt _i nteger cb_id;

PGSt _doubl e eci _vector[2][3];
PGSt _SMF_st at us returnStat us;
/* Begin exanple */

/* Define base tinme and offsets desired
Base time is given in CCSDS ASCI| Tinme code B format;
CCSDS ASCII Time code A format is also allowed
O fsets are in seconds */

strcpy(ascii UTC B, "1994-012T13: 46: 21. 452");
time_offset[O0] 0.0;

tinme_offset[1] 10. 0;

npts = 2;

/* Define celestial body identifier for Neptune
A list of possible values appears in the Notes */

cb_id = PGSd_NEPTUNE

returnStatus = PGS_CBP_Earth_CB_Vector(npts, ascii UTC_B,
tine_offset, cb_id, eci_vector);

/*
Matri x eci _vector now contains the follow ng
ECl coordinates, in neters:

***For 1994- 012T13: 46: 21. 457* **
eci _vector[0][0] = 1668891938932. 883
eci _vector[0][1] = -4013391166628. 138
eci _vector[0][2] = -1685932810433. 269

For 1994-012T13: 46: 31. 45Z

eci _vector[1][0] 1668892270510. 678
eci _vector[1][1] -4013391044366. 878
eci _vector[1][2] -1685932759128. 719

*/

FORTRAN example:

I NCLUDE ' PGS_SMF. f'
| NCLUDE ' PGS_CBP. f'
| NCLUDE ' PGS_CBP 6. f'
I NCLUDE ' PGS_TD 3. f'

I NTEGER pgs_cbp_earth_cb_vector

I NTEGER npt s

CHARACTER* 25 asciiutc_b

DOUBLE PRECI SI ON tinme_of fset (2)
I NTEGER cb_id

DOUBLE PRECI SI ON eci _vector(3,2)
I NTEGER r et ur nst at us

Begi n exanpl e

Define base tinme and offsets desired

Base time is given in CCSDS ASCI| Tinme code B fornmat;
CCSDS ASCI|I Time code A format is also allowed

O fsets are in seconds

asciiutc_b = '1994-012T13: 46: 21. 457
tine_offset(1) 0.0

tinme_offset(2) 10.0

npts = 2

! Define celestial body identifier for Neptune
! Alist of possible values appears in the Notes

cb_id = PGSd_NEPTUNE

returnStatus = pgs_cbp_earth_cb_vector(npts, asciiutc_b,
+ tinme_offset, cb_id, eci_vector)

Matri x eci _vector now contains the follow ng
ECl coordinates, in neters:

For 1994-012T13: 46: 21. 45Z

eci _vector(1)(1) 1668891938932. 883
eci _vector(2)(1) -4013391166628. 138
eci _vector(3)(1) -1685932810433. 269

For 1094- 012T13: 46: 31. 457
eci _vector(1)(2) = 1668892270510. 678

eci _vector(2)(2) = -4013391044366. 878
eci _vector(3)(2) = -1685932759128. 719

Notes:

Below is a list of valid values for the 4th argument to this tool, the celestial body identifier cb_id. To use the names, prepend PGSd_ to the object, as in
the present example. The mnemonic PGSd_NEPTUNE is used in the example; you may also use the numerical value (here 8), which may be useful
to construct loops. These values are defined in file $PGSINC/PGS_CBP.h and $PGSINC/PGS_CBP.f. In the table, PGSd_SSBARY denotes the solar
system barycenter, and PGSd_EMBARY denotes the barycenter of the Earth-Moon system.

Cel estial Body Identifiers

1 = PGSd_MERCURY 8 = PGSd_NEPTUNE
2 = PGSd_VENUS 9 = PGSd_PLUTO
3 = [unused] 10 = PGSd_MOON

4 = PGSd_MARS 11 = PGSd_SUN

5 = PGSd_JUPI TER 12 = PGSd_SSBARY
6 = PGSd_SATURN 13 = PGSd_EMBARY
7 = PGSd_URANUS

Files:
This tool accesses the following files:

® |eap seconds
® JPL planetary ephemeris

The physical references to these files are defined in the Process Control File (PCF) template supplied with the Toolkit, SPGSRUN/PCF.v5. If you are

using a PCF derived from that template, you need not do anything extra, to enable access to these files.
See sec. 3.1.2, Constructing your Process Control file, for information about PCF entries.

10.2.3 PGS_CBP_Sat_CB_Vector

Short explanation of what it's for: Retrieve the spacecraft reference frame vector from the satellite to the Sun, the Moon or a planet for a given time.
This function is in file: $PGSSRC/CBP/PGS_CBP_Sat_CB_Vector.c

Examples:

Spacecraft reference frame vector to Neptune is retrieved for 2 different times.

C example:
#i ncl ude <PGS_CBP. h>

PGSt _tag spacecraftlD;
PGSt _i nt eger npts;

char ascii UTC B[26];

PGSt _doubl e tine_offset[2];
PGSt _i nteger cb_id;

PGSt _doubl e sc_frame_vector[2][3];
PGSt _SMF_st at us returnStatus;
/* Begin exanple */

/* Assign spacecraft ID tag
PGSd_ECS_AM and PGSd_EOS PM are al so all owed */

spacecraftl D = PGSd_TRW

/* Define base tinme and offsets desired
Base time is given in CCSDS ASCI| Tine code B fornat;
CCSDS ASCII Time code A format is also allowed
O fsets are in seconds */

strcpy(asciiUTC B, "1994-012T13: 46: 21. 452");
tine_offset[0] = 0.0;

tinme_offset[1] = 10.0;

npts = 2;

/* Define celestial body identifier for Neptune
A list of possible values appears in the Notes */

cb_id = PGSd_NEPTUNE;

returnStatus = PGS_CBP_Sat_CB Vector(spacecraftlD, npts,
ascii UTC B, tinme_offset, cb_id,
sc_frame_vector);

/*
Matri x sc_franme_vector now contains the follow ng
spacecraft reference frame coordinates, in nmeters:

For 1994-012T13: 46: 21. 457

sc_frame_vector[0][0] 751956411224. 327
sc_franme_vector[0][1] 3871117053548. 945
sc_frame_vector[0][2] -2486772862890. 086

For 1994-012T13: 46: 31. 45Z

sc_frame_vector[1][0] 723434403679. 513
sc_frame_vector[1][1] 3871139986897. 981
sc_franme_vector[1][2] -2495182523478. 138

*/

FORTRAN example:

I NCLUDE ' PGS_SMF. f
| NCLUDE ' PGS_CBP. f'
| NCLUDE ' PGS_CBP_6.
I NCLUDE ' PGS_TD 3. f
I NCLUDE ' PGS_TD. f'

f

I NTEGER pgs_cbp_sat _cb_vect or

| NTEGER spacecraftid

I NTEGER npt s

CHARACTER* 25 asciiutc_b

DOUBLE PRECI SI ON ti me_of f set (2)
I NTEGER cb_id

DOUBLE PRECI SI ON sc_frame_vector (3, 2)
I NTEGER r et ur nst at us

Begi n exanpl e

Assi gn spacecraft |ID tag
PGSd_ECS_AM and PGSd_EOS PM are al so al | oned

spacecraftid = PGSd_TRW

Define base time and offsets desired

Base time is given in CCSDS ASCI| Tine code B fornat;
CCSDS ASCII Time code A format is also allowed

O fsets are in seconds

asciiutc_b = '1994-012T13: 46: 21. 45Z'
tine_offset(1l) = 0.0

tine_offset(2) = 10.0

npts = 2

! Define celestial body identifier for Neptune
! Alist of possible values appears in the Notes

cb_id = PGSd_NEPTUNE

returnStatus = pgs_cbp_sat_cb_vector(spacecraftid, npts,
+ asciiutc_b, time_offset, cb_id,
+ sc_frane_vector)

Matri x sc_frame_vector now contains the follow ng
coordi nates of NEPTUNE in the spacecraft reference franeg,
in neters:

For 1994- 012T13: 46: 21. 45Z

sc_frame_vector(1)(1) 751956411224, 327
sc_frame_vector(2)(1) 3871117053548. 945
sc_franme_vector(3)(1) -2486772862890. 086

For 1994- 012T13: 46: 31. 45Z

sc_franme_vector(1)(2) 723434403679. 513
sc_frame_vector(2)(2) 3871139986897. 981
sc_franme_vector(3)(2) -2495182523478. 138

Notes:

Below is a list of valid values for the 4th argument to this tool, the celestial body identifier cb_id. The mnemonic (PGSd_NEPTUNE) is used in the
example; you may also use the numerical value (here 8), which may be useful to construct loops. These values are defined in file $PGSINC
/PGS_CBP.h. In the table, PGSd_SSBARY denotes the solar system barycenter, and PGSd_EMBARY denotes the barycenter of the earth-moon
system.

Cel estial Body Identifiers

1 = PGSd_MERCURY 8 = PGSd_NEPTUNE
2 = PGSd_VENUS 9 = PGSd_PLUTO
3 = PGSd_EARTH 10 = PGSd_MOON

4 = PGSd_MARS 11 = PGSd_SUN

5 = PGSd_JUPI TER 12 = PGSd_SSBARY
6 = PGSd_SATURN 13 = PGSd_EMBARY
7 = PGSd_URANUS

Files:
This tool accesses the following files:

® leap seconds

® polar motion and UT1-UTC
® JPL planetary ephemeris
® spacecraft ephemeris/attitude

The physical references to these files are defined in the Process Control File (PCF) template supplied with the Toolkit, SPGSRUN/PCF.v5. If you are
using a PCF derived from that template, you need not do anything extra, to enable access to these files.
See sec. 3.1.2, Constructing your Process Control file, for information about PCF entries.

The exception is the spacecraft ephemeris/attitude file, which must be created by you for testing purposes at the SCF. Simulated files may be
prepared through use of the orbsim utility; (sec. 7.1.2.1); alternatively, you may prepare them yourself (sec. 7.1.2.2).

This file must follow the ephemeris file naming convention, and must reside in directory $PGSLIB/database/EPH. This directory is specified in $PGSR
UN/PCF.v5; individual spacecraft ephemeris/attitude filenames are not entered in the PCF.

10.2.4 PGS_CBP_SolarTimeCoords

Short explanation of what it's for: Determine various types of solar time and also solar position for a given time.
This function is in file: $PGSSRC/CBP/PGS_CBP_SolarTimeCoords.c
Examples:

C example:

#i ncl ude <PGS_CBP. h>

char ascii UTC B[26];
PGSt _doubl e | ongi t ude;

PGSt _doubl e greenw ch;

PGSt _doubl e | ocal Mean;

PGSt _doubl e | ocal Apparent;
PGSt _doubl e ri ght Ascensi on;
PGSt _doubl e declination;

PGSt _SMF_st at us returnStatus;

/* Begin exanple */

/* Define UTC tinme desired

UTC time is given in CCSDS ASCI| Tine code B format;
CCSDS ASCII Time code A format is also allowed */

strcpy(asciiUTC_B, "1994-012T13: 46: 21. 457");

/* Define longitude in radians -- positive is east of G eenw ch
Note: If you only want right ascension and declination,
you may set this value to 0, since it is not used */

| ongi tude = 1.0;

returnStatus = PGS_CBP_Sol ar Ti neCoords(ascii UTC_B, |ongitude,

&gr eenwi ch, & ocal Mean, &l ocal Apparent,
& i ght Ascensi on, &declination);

/*
The followi ng val ues are returned:

Solar tines in seconds since mdnight:

greenwi ch=49506. 859330 Greenwi ch Mean Sol ar Tinme
| ocal Mean=63257. 846413 Local Mean Sol ar Time

| ocal Appar ent =62758. 715529 Local Apparent Solar Time

Sol ar coordi nat es:

ri ght Ascensi on=5. 098682 Ri ght ascension of the Sun, radians
decl i nati on=-0. 377383 Declination of the Sun, radians
*/

FORTRAN example:

I NCLUDE ' PGS_SMF. f'
| NCLUDE ' PGS_CBP. f'
| NCLUDE ' PGS_CBP 6. f'
I NCLUDE ' PGS_TD 3. f'

| NTEGER pgs_cbp_sol arti necoords

CHARACTER* 25 asciiutc_b
DOUBLE PRECI SI ON | ongi t ude

DOUBLE PRECI SI ON gr eenwi ch
DOUBLE PRECI SI ON | ocal nmean
DOUBLE PRECI SI ON | ocal appar ent
DOUBLE PRECI SI ON ri ght ascensi on
DOUBLE PRECI SI ON decl i nation

I NTEGER r et ur nst at us
Begi n exanpl e
Define UTC time desired

UTC time is given in CCSDS ASCI|I Tinme code B format;
CCSDS ASCII Time code A format is also allowed */

asciiutc_b = '1998-181T10: 51: 28. 3200002

Define longitude in radians -- positive is east of G eenw ch
Note: |If you only want right ascension and declination,
or the Greenwich solar time, you may set this value to 0.0,
since does not affect these answers. Sonme nunber nust be
supplied in any case because the function always cal cul ates
all the results and coul d encounter data exceptions with
uninitialized input data

longitude = 1.0

returnStatus = pgs_cbp_sol arti mecoords(ascii UTC B, | ongitude,
greenwi ch, | ocal nean, | ocal apparent,
ri ghtascensi on, declination)

! The followi ng val ues are returned:

Solar tinmes in seconds since mdnight:

greenwi ch=49506. 859330 G eenwi ch Mean Sol ar Tinme
| ocal Mean=63257. 846413 Local Mean Sol ar Tine

| ocal Appar ent =62758. 715529 Local Apparent Solar Tinme

Sol ar coordi nat es:

!

! right Ascensi on=5. 098682 Ri ght ascension of the Sun, radians
! declination=-0.377383 Declination of the Sun, radians

!

Notes:

Accuracy of the returned solar times is about 0.5 minutes; accuracy of the solar coordinates is about 0.7 milliradians (0.04 degrees).

See section 10.1, Celestial Body Position Tools Overview, for a description of the types of solar time returned by this tool.

11. Coordinate System Conversion (CSC) Tools

11.1 Coordinate System Conversion (CSC) Tools Overview
11.1.1 Introduction

These tools are used to manipulate various position and velocity coordinates in several reference frames. Use of them is optional.

The tools divide into two sections: tools that perform reference frame coordinate transformations directly, and tools that perform various other
functions involving coordinate transformations.

Before discussing what the tools do, we give brief descriptions of the different reference frames used.
Reference Frames

Earth Centered Inertial (ECl)Inertial frame centered on earth, with Z axis along the rotational axis, and X axis directed toward vernal equinox. Epoch
for all ECS data is J2000.Earth Centered Rotating (ECR)Frame with axes fixed in the earth, described by Cartesian coordinates. Z axis is along
geographic North, and X axis is directed toward the Greenwich meridian.Geodetic (GEO)Frame with axes fixed in the earth, using geodetic latitude,
longitude and altitude as coordinates.Orbital (ORB)Frame centered on the spacecraft, with the X-Z plane in the spacecraft orbital plane, and the Z axis
directed toward geocentric nadir.Spacecraft (SC)Frame with axes fixed in the spacecraft. Coincides with Orbital frame when roll, pitch, and yaw are
zero.

All toolkit functions use geodetic latitude for their latitude argument, if any. Geodetic latitude is defined as the angle a normal to the earth ellipsoid
(earth model) makes with the equatorial plane, as opposed to the geocentric latitude, which is the angle that the vector to the center of the earth
makes with the equatorial plane.

The earth models, or reference ellipsoids, used by some of these tools are defined in the "earth axis data file" $PGSHOME/lib/database/CSC
/earthfigure.dat. You may edit this text file to add your own ellipsoid, if you like. The principal reference for the values supplied with the Toolkit is Astron
omical Almanac for the Year 1994, U.S. Naval Observatory, 1993, p. K13, "Geodetic Reference Spheroids."

The book is available from the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402.

Many of the tools use time as an input. In the Toolkit, time is specified as UTC in CCSDS ASCII Time Code format, with optional offsets in seconds.
See section 9.1.2, " Definition of Time Scales and Formats Used", under the "UTC: Universal Coordinated Time" entry, for details of this format.

11.1.2 Direct reference frame coordinate transformations
These tools perform coordinate transformations to and from the ECI, ECR, SC and ORB frames described above.

There are 10 of these. The function of each one is obvious from its name. Other transforms are possible using combinations of these. The transforms
between Earth centered and spacecraft coordinate systems will produce only a rotation when the input vector is a unit vector, but will introduce the
appropriate translation when the input is a vector in meters.

Tools that directly transform between reference frames

PGS_CSC_ECItoECR
PGS_CSC_ECItoORB
PGS_CSC_ECItoSC
PGS_CSC_ECRI0ECI
PGS_CSC_ECRtGEO
PGS_CSC_GEOtECR
PGS_CSC_ORBoECI
PGS_CSC_ORBt0SC
PGS_CSC_SCtoECI
PGS_CSC_SCtoORB

Note: In the May 1994 Toolkit delivery (TK2), some of these tools were combined in a single tool, PGS_CSC_FrameChange.
11.1.3 Other tools that involve coordinate systems

This section contains tools that perform various other functions involving coordinate transformations. It includes:

PGS_CSC_DayNightDetermines whether a given surface location at a given time is in day or night.PGS_CSC_Earthpt_FOVDetermines whether a
given surface or atmosphere location at a given time is within a given field-of-view.PGS_CSC_GetFOV_PixelDetermines the footprint of an instrument
field-of-view on the earth, and also returns some other related data.PGS_CSC_GreenwichHourFinds the hour angle of the vernal equinox at the
Greenwich meridian.PGS_CSC_nutate2000Transforms a vector under nutation from Celestial Coordinates of date in Barycentric Dynamical Time
(TDB) to J2000 coordinates or from J2000 coordinates to Celestial Coordinates of date.PGS_CSC_precs2000Precesses a vector from Celestial
Coordinates of date in Barycentric Dynamical Time (TDB) to J2000 coordinates or from J2000 coordinates to Celestial Coordinates of date in
Barycentric Dynamical Time (TDB).PGS_CSC_SpaceRefractEstimates the refraction for a ray incident from space or a line of sight from space to the
Earth's surface, based on the unrefracted zenith angle.PGS_CSC_SubSatPointFinds the position and velocity of the sub-satellite point and rate of
change of spacecraft altitude off the ellipsoid.PGS_CSC_wahr2Calculates nutation angles delta psi and delta epsilon, and their rates of change,
referred to the ecliptic of date, from the Wahr series.PGS_CSC_ZenithAzimuthDetermines zenith angle and azimuth of instrument look vector or
vector to a celestial body.

Information about the theoretical basis of these tools is available in " Theoretical Basis of the SDP Toolkit Geolocation Package for the ECS
Project”

11.2 Coordinate System Conversion (CSC) Tool Descriptions

This section contains an alphabetical listing of the descriptions of the individual PGS_CSC_* tools.

11.2.1 PGS_CSC_DayNight

Short explanation of what it's for: Determine whether a given latitude/longitude at a given time is in day or night.
This function is in file: $PGSSRC/CBP/PGS_CSC_DayNight.c

Examples:

Whether two earth positions are in day or night is determined. The "NauticalNight" definition of day/night is used.

C example:

https://git.earthdata.nasa.gov/rest/git-lfs/storage/DAS/sdptoolkit/ff4361130a7024bf0b9acb5e43a91ca349bffad6a7683f66a66fbb36746c4fe6?response-content-disposition=attachment%3B%20filename%3D%22tp4450202.pdf%22%3B%20filename*%3Dutf-8%27%27tp4450202.pdf
https://git.earthdata.nasa.gov/rest/git-lfs/storage/DAS/sdptoolkit/ff4361130a7024bf0b9acb5e43a91ca349bffad6a7683f66a66fbb36746c4fe6?response-content-disposition=attachment%3B%20filename%3D%22tp4450202.pdf%22%3B%20filename*%3Dutf-8%27%27tp4450202.pdf

#i ncl ude <PGS_CSC. h>

PGSt _i nt eger nunVal ues;
char ascii UTC_Al 28] ;

PGSt _doubl e time_offset[2];
PGSt _doubl e | atitude[2];
PGSt _doubl e | ongi t ude[2] ;
PGSt _t ag day_ni ght _nodel ;

PGSt _bool ean i s_dark[2];

PEiSt _SMF_status returnStatus;

{Segi n exanpl e

*/

/* Define tine of the input |ats/longs */

nunmval ues = 2;
strcpy(ascii UTC_A, "1998-06-30T10: 51: 28. 320000Z");

tine_offset[0] = 0.0;

time_offset[1] = 0.0;

/* Fill input vectors */

latitude[0] = -0.603131 /* radians */
I ongi tude[0] = 2.440543 /* radians */
latitude[1] = -0.603131

| ongi tude[1] = 0.870543

/* Define day/night nodel
See Notes for other possible values */

day_ni ght _nodel = PGSd_Nauti cal Ni ght;

/* Get day/night flags */

returnStatus = PGS_CSC _DayN ght (nunVal ues, ascii UTC_A,
time_offset, latitude, |ongitude, day_ni ght_nodel,

is_dark);

/* Array is_dark now contains the follow ng val ues:

is_dark[0] = PGS_TRUE; This point is in the dark
is_dark[1l] = PGS_FALSE; This point is in the daylight
*/

FORTRAN example:

| MPLI CI T NONE
I NCLUDE ' PGS_SMF. f'

I NCLUDE ' PGS_TD 3. f

| NCLUDE ' PGS_CBP._6. f
I NCLUDE ' PGS_CSC. f

| NCLUDE ' PGS_CSC 4. f

I NTEGER pgs_csc_dayni ght

I NTEGER nunval ues

CHARACTER* 27 asciiutc_a

DOUBLE PRECI SI ON ti me_of f set (2)
DOUBLE PRECI SION | atitude(2)
DOUBLE PRECI SI ON | ongi t ude(2)

I NTEGER day_ni ght _nodel

I NTEGER i s_dar k(2)

I NTEGER r et ur nst at us

! Begin exanple

| Define tinme of the input lat/long
nunval ues = 2
asciiutc_a = '1998-06-30T10: 51: 28. 3200002

time_offset(1l) = 0.0
tine_offset(2) = 0.0

latitude(l) = -0.603131 ! radi ans
I ongi tude(1l) = 2.440543 I radi ans

latitude(2) = -0.603131
| ongi tude(2) = 0.870543

! Define day/night nodel
! See Notes for other possible values

day_ni ght _nodel = PGSd_Nauti cal Ni ght
! Get day/night flags
returnstatus = pgs_csc_dayni ght(nunval ues, asciiutc_a,
tine_offset, |atitude, |ongitude, day_night_nodel,
is_dark)
! Array is_dark now contains the follow ng val ues:
! is_dark(1l) = PGS TRUE This point is in the dark
! is_dark(2) = PGS _FALSE This point is in the daylight
Notes:
Allowed values of the 6th argument in the calling sequence day_night_model:
PGSd_CivilTwilight(end of day) Sun deemed to set within 90 degrees 50 arc minutes from zenith.PGSd_CivilNight(end of civil twilight) Sun more than
96 degrees from zenith.(same as start of Nautical twilight)PGSd_NauticalNight(end of Nautical twilight) Sun more than 102 degrees from zenith.
PGSd_AstronNight(end of Astronomical Twilight) Sun more than 108 degrees from zenith

A value other than PGS_TRUE or PGS_FALSE may be returned in the variable is_dark of the example. This indicates an error determining that value
only; other elements of the output array are unaffected.

Files:
This tool accesses the following files:

® |eap seconds

® polar motion and UT1-UTC

® earth model tags

® JPL planetary ephemeris

The physical references to these files are defined in the Process Control File (PCF) template supplied with the Toolkit, SPGSRUN/PCF.v5. If you are
using a PCF derived from that template, you need not do anything extra to enable access to these files.

See sec. 3.1.2, Constructing your Process Control file, for information about PCF entries.

11.2.2 PGS_CSC_Earthpt_FOV

https://newsroom.gsfc.nasa.gov/sdptoolkit/primer/csc_DayNight.html#Notes

Short explanation of what it's for: Determine whether a given lat/long is within the field-of-view (FOV), and return the S/C frame vector to that point.
This function is in file: $PGSSRC/CBP/PGS_CSC_Earthpt_FOV.c

Examples:

It is determined whether a point is within the LIS instrument FOV, at a single time.

C example:
#i ncl ude <PGS_CSC. h>

PGSt _i nt eger nTi nePts;

char ascii UTC_A 28] ;

PGSt _double time_offset[1];

PGSt _tag spacecraftlD;

char earthModel [21];

PGSt _doubl e | atitude;

PGSt _doubl e | ongi t ude;

PGSt _doubl e al titude;

PGSt _doubl e fov_inside_vector[1][3];
PGSt _i nt eger nunfovPerim

PGSt _doubl e fov_perimuvector[1][4][3];

PGSt _bool ean ptlnFov_flag[1];
PGSt _doubl e sc_earthPt _vector[1][3];

PGSt _SMF_st at us returnStat us;
/* Begin exanple */
/* Define base time and offsets desired.
Base time is given in CCSDS ASCI| Tinme code A format;
CCSDS ASCII Time code B format is also allowed.
Offsets are in seconds.
O fsets are useful if you want to determ ne whether a
given point is in the FOV over sone tinme interval.
Here we process for a single time. */
nTi mePts = 1;
strcpy(ascii UTC_A, "1998-06-30T10: 51: 28. 320000Z2") ;
tine_offset[0] = 0.0;
/* Assign spacecraft ID tag
PGSd_EOS_AM and PGSd_EOS_PM are al so al |l owed */
spacecraft| D = PGSd_TRMM
/* Define earth reference nodel */
strcpy(earthModel, "WGS84");

/* Fill S/IC frame vectors that define the field-of-view
Al 'so supply a single arbitrary vector that is inside the FOV. */

nunfFovPeri m = 4;

fov_perimvector[0][0][0] = -0.534711; /* S/C frame X conponent */
fov_perimvector[0][0][1] = 0.534711; /* S/C franme Y conponent */
fov_perimuvector[0][0][2] = 0.654345; /* S/C frame Z conponent */
fov_perimvector[0][1][0] = -0.534711;

fov_perimuvector[0][1][1] = -0.534711;

fov_perimvector[0][1][2] = 0.654345;

fov_perimuvector[0][2][0] = 0.534711;

fov_perimuvector[0][2][1] = -0.534711;

fov_perimuvector[0][2][2] = 0.654345;

fov_perimvector[0][3][0] = 0.534711;

fov_perimuvector[0][3][1] = 0.534711;

fov_perimuvector[0][3][2] = 0.654345;

fov_inside_vector[0][0] = 0.0;

fov_inside_vector[0][1] = 0.0;

fov_inside_vector[0][2] = 0.654345;

/* Define the point for which you want to determ ne
whether it is in the FOV */

|atitude = -.64;
| ongi tude = 2. 46;
altitude = 0.0;

/* Determ ne whether the point is in the FOV */

returnStatus = PGS_CSC _Earthpt _FOV(nTi nePts,
ascii UTC_A, tine_offset, spacecraftlD, earthMdel,
latitude, longitude, altitude,
fov_inside_vector, nunfFovPerim fov_perimvector,
ptlnFov_flag, sc_earthPt_vector);

/* The followi ng values are returned:

Fl ag that indicates if given earth point is within the FOV

ptInFov_flag[0] = PGS_FALSE

Unit vector fromS/Cto earth point in S/C franme coords

-0. 867 X coordi nate
0.031 Y coordi nate
0. 497 Z coordinate

sc_earthPt_vector[O0, 0]
sc_earthPt_vector[0, 1]
sc_earthPt _vector[0, 2]

*/
FORTRAN example:

I MPLICI' T NONE

I NCLUDE ' PGS_TD. f*

I NCLUDE ' PGS_TD_3. f
I NCLUDE ' PGS_CSC_4
I NCLUDE ' PGS_EPH_5.
I NCLUDE ' PGS_MEM 7
I NCLUDE ' PGS_SMF. f'

I NTEGER pgs_csc_earthpt _fov

I NTEGER nti nepts

CHARACTER* 27 asciiutc_a

DOUBLE PRECI SI ON tinme_of fset (1)

I NTEGER spacecraftid

CHARACTER* 20 eart hnodel

DOUBLE PRECI SI ON | atitude

DOUBLE PRECI SI ON | ongi t ude

DOUBLE PRECI SI ON al titude

DOUBLE PREC!I SI ON fov_insi de_vector(3,1)
I NTEGER nunf ovperim

DOUBLE PRECI SI ON fov_perimvector(3,4,1)

I NTEGER ptinfov_flag(1)
DOUBLE PRECI SI ON sc_eart hpt _vector (3, 1)

I NTEGER r et ur nst at us

Begi n exanpl e

Define base tine and offsets desired.

Base time is given in CCSDS ASCI| Tinme code A format;
CCSDS ASCII Time code B format is also allowed.

O fsets are in seconds.

O fsets are useful if you want to determ ne whether a
given point is in the FOV over sone tinme interval.
Here we process for a single tine.

ntinmepts = 1
asciiutc_a = '1998-06-30T10: 51: 28. 3200002
tinme_offset(1l) = 0.0

! Assign spacecraft ID tag
! PGSd_ECS_AM and PGSd_EOS PM are al so al | oned

spacecraftid = PGSd_TRW
! Define earth reference nodel
eart hvbdel = ' WGS84'

! Fill S/ICfranme vectors that define the field-of-view
! Also supply a single arbitrary vector that is inside the FOV.

fov_perimvector(1,1,1) = -0.534711 ! S/C frame X pos
fov_perimvector(2,1,1) = 0.534711 ! S/C frame Y pos
fov_perimuvector(3,1,1) = 0.654345 ! S/C frame Z pos
fov_perimuvector(1,2,1) = -0.534711
fov_perimuvector(2,2,1) = -0.534711
fov_perimuvector(3,2,1) = 0.654345
fov_perimuvector(1,3,1) = 0.534711
fov_perimuvector(2,3,1) = -0.534711
fov_perimvector(3,3,1) = 0.654345
fov_perimuvector(1,4,1) = 0.534711
fov_perimuvector(2,4,1) = 0.534711
fov_perimuvector(3,4,1) = 0.654345
fov_inside_vector(1,1) = 0.0

fov_inside_vector(2,1) = 0.0

fov_inside_vector(3,1) = 0.654345

! Define the point for which you want to determ ne

! whether it is in the FOV

<

latitude = -0.64
I ongi tude = 2.46
altitude = 0.0

| Determ ne whether the point is in the FOV

returnstatus = pgs_csc_earthpt _fov(ntinepts,
asciiutc_a, tine_offset, spacecraftid, earthnodel,
latitude, longitude, altitude,
fov_inside_vector, nunfovperim fov_perimuvector,
ptinfov_flag, sc_earthpt_vector)

+ o+ o+ o+

! The followi ng values are returned:
! Flag that indicates if given earth point is within the FOV

! ptinFov_flag(l) = PGS_FALSE

! Unit vector fromS/Cto earth point in S/C frane coords

-0. 867 X coordi nate
0. 031 Y coordi nate
0. 497 Z coordi nate

! sc_earthPt _vector(1,1)
! sc_earthPt_vector(2,1)
| sc_earthPt _vector(3,1)

Notes:
If errors in processing occur, the value PGSd_GEO_ERROR_VALUE is returned in the corresponding element of array sc_earthPt_vector.

The number of points defining the FOV perimeter numFovPerim must be at least 3.
The perimeter vector points must be sequential around the FOV perimeter.

Files:
This tool accesses the following files:
® leap seconds
® polar motion and UT1-UTC
® earth axis data
® spacecraft ephemeris/attitude
The physical references to these files are defined in the Process Control File (PCF) template supplied with the Toolkit, SPGSRUN/PCF.v5. If you are
using a PCF derived from that template, you need not do anything extra to enable access to these files.
See sec. 3.1.2, Constructing your Process Control file, for information about PCF entries.
The exception is the spacecraft ephemeris/attitude file, which must be created by you for testing purposes at the SCF. Simulated files may be
prepared through use of the orbsim utility; (sec. 7.1.2.1); alternatively, you may prepare them yourself (sec. 7.1.2.2).

This file must follow the ephemeris file naming convention, and must reside in directory $PGSDAT/EPH. This directory is specified in $PGSRUN/PCF.
v5; individual spacecraft ephemeris/attitude filenames are not entered in the PCF.

11.2.3 PGS_CSC_ECItoECR

Short explanation of what it's for: Convert a vector in Earth Centered Inertial (ECI) coordinates to Earth Centered Rotating (ECR) coordinates .

This function is in file: $PGSSRC/CBP/PGS_CSC_ECItoECR.c

Examples:

Two ECI vectors containing position and velocity are converted to two ECR vectors.

C example:

#i ncl ude <PGS_CSC. h>

PGSt _i nt eger

nunval ues;

char ascii UTC_A[28];
PGSt _doubl e tine_offset[2];
PGSt _doubl e eci _vector[2][6];

PGSt _doubl e ecr_vector[2][6];

PGSt _SMF_st atus returnStatus;

/*
Begi n exanpl e
*/
/~k

CCSDS ASCI |

O fsets are in seconds */

nunmval ues = 2;

strcpy(ascii UTC_A
0

tinme_offset[0]
time_of fset[1]

/I* Fill
eci _vector[0][0]
eci _vector[0][1]
eci _vector[0][2]
eci _vector[0][3]
eci _vector[0][4]
eci _vector[0][5]

eci _vector[1][0]
eci _vector[1][1]
eci _vector[1][2]
eci _vector[1][3]
eci _vector[1][4]
eci _vector[1][5]

/*

returnStatus =

/* Matrix ecr_vector

ecr_vector[0]
ecr _vector[0]
ecr_vector[0]
ecr_vector[0]
ecr_vector[0]
ecr_vector[0]
ecr_vector[1][0]
ecr_vector[1][1]
ecr_vector[1][2]
ecr_vector[1][3]
ecr_vector[1][4]
ecr_vector[1][5]

*/
FORTRAN exanpl e:

1.

0;
0

input vectors */

-4191102. 083176;
-3647080. 063050;
-3803463. 200778;
5402. 13704,
-5411. 637312;
-764. 857061,

-4185697. 218627,
- 3652489. 325640,
- 3804225. 574655;
5407.590883;
-5406. 886691,

- 759. 890523;

Get ECR vector */

PGS_CSC_ECI t oECR(nunVal ues,
eci _vector,

tine_offset,

-4245958. 362002
3583944. 541294
-3802636. 071286
-4259. 539749
-5857. 188662
- 765. 490907

-4250215. 575857
3578085. 340407
-3803399. 079548
-4254. 887147
-5861.211973
- 760. 525446

Define base tinme and offsets desired
Base time is given in CCSDS ASCI |
Ti ne code B fornmat

Time code A fornat;
is also allowed

, "1998-06-30T10: 51: 28. 320000Z") ;

/* ECl X pos, neters */

/* ECl Y pos, neters */

/* ECl Z pos, neters */

/* ECl X vel, neters/sec */

/* ECl Y vel, nmeters/sec */

/* ECl Z vel, nmeters/sec */
asci i UTC_A,

ECR X pos,
ECR Y pos,
ECR Z pos,
ECR X vel,
ECR Y vel,
ECR Z vel,

ecr_vector);

now contains the follow ng val ues:

neters
neters
neters
nmet er s/ sec
nmet er s/ sec
nmet ers/ sec

I MPLI CI T NONE

I NCLUDE ' PGS_SMF. f'

I NCLUDE ' PGS_TD 3. f*
I NCLUDE ' PGS_CSC 4. f'

I NTEGER pgs_csc_eci t oecr
I NTEGER nunval ues
CHARACTER* 27 asciiutc_a
DOUBLE PRECI SI ON tinme_of fset (2)
DOUBLE PRECI SI ON eci _vector (6, 2)
DOUBLE PRECI SI ON ecr _vector (6, 2)
I NTEGER r et ur nst at us
! Begin exanple
Define base time and offsets desired
Base time is given in CCSDS ASCI| Tine code A format

CCSDS ASCII Time code B format is also allowed
O fsets are in seconds

nunval ues = 2
asciiutc_a =
time_offset(1l) =
tinme_offset(2) =

' 1998-06-30T10: 51: 28. 320000Z
=0.0
1.0

! Fill input vectors
eci _vector(1,1) = -4191102.083176 ! ECl X pos, neters
eci _vector(2,1) = -3647080.063050 ! ECl Y pos, neters
eci _vector(3,1) = -3803463.200778 ! ECl Z pos, neters
eci _vector(4,1) = 5402.137043 ! ECl X vel, neters/sec
eci _vector(5,1) = -5411. 637312 ! ECl Y vel, neters/sec
eci _vector(6,1) = -764.857061 I ECI Z vel, neters/sec
eci _vector(1,2) = -4185697.218627
eci _vector(2,2) = -3652489. 325640
eci _vector(3,2) = -3804225.574655
eci _vector(4,2) = 5407.590883
eci _vector(5,2) = -5406.886691
eci _vector(6,2) = -759.890523
! Get ECR vector

returnstatus = pgs_csc_ecitoecr(nunval ues, asciiutc_a

tine_offset, eci_vector, ecr_vector)

! Matrix ecr_vector now contains the follow ng val ues

! ecr_vector(1,1) = -4245958. 362002 ECR X pos, neters
| ecr_vector(2,1) = 3583944.541294 ECR Y pos, neters
! ecr_vector(3,1) = -3802636.071286 ECR Z pos, neters
! ecr_vector(4,1) = -4259.539749 ECR X vel, neters/sec
! ecr_vector(5,1) = -5857.188662 ECR Y vel, neters/sec
! ecr_vector(6,1) = -765.490907 ECR Z vel, neters/sec

ecr_vector (1, 2)
ecr_vector(2,2)
ecr_vector(3,2)
ecr_vector (4, 2)
ecr _vector (5, 2)
ecr_vector (6, 2)

Not es

-4250215. 575857
3578085. 340407
-3803399. 079548
-4254. 887147
-5861. 211973
- 760. 525446

Epoch for the ECI input vector must be J2000.

Precession, nutation, and polar motion are all taken into account in the transformation.

Files

This tool accesses the following files:

® leap seconds

® polar motion and UT1-UTC

The physical references to these files are defined in the Process Control File (PCF) template supplied with the Toolkit, SPGSRUN/PCF.v5. If you are
using a PCF derived from that template, you need not do anything extra to enable access to these files.
See sec. 3.1.2, Constructing your Process Control file, for information about PCF entries.

11.2.4 PGS_CSC_ECItoORB

Short explanation of what it's for: Convert a vector in Earth Centered Inertial (ECI) coordinates to Orbital (ORB) reference frame coordinates .
This function is in file: $PGSSRC/CBP/PGS_CSC_ECItoORB.c
Examples:

Two ECI vectors containing position are converted to two ORB vectors.
The first is a spacecraft ephemeris ECI vector in meters; the second is a unit vector.

C example:
#i ncl ude <PGS_CSC. h>

PGSt _tag spacecraftlD;

PGSt _i nt eger nunVal ues;

char ascii UTC_A[28] ;

PGSt _doubl e time_offset[2];
PGSt _doubl e eci _vector[2][3];

PGSt _doubl e orb_vector[2][3];

PGSt _SMF_st at us returnStat us;
/*

Begi n exanpl e

*/

/* Assign spacecraft ID tag
PGSd_ECS_AM and PGSd_EOS PM are al so all owed */
spacecraft| D = PGSd_TRWM

/* Define base tinme and offsets desired
Base time is given in CCSDS ASCI| Tine code A fornat;
CCSDS ASCII Time code B format is also allowed
O fsets are in seconds */

nunmval ues = 2;

strcpy(ascii UTC_A, "1998-06-30T10: 51: 28. 320000Z") ;
tine_offset[0] = 0.0;

time_offset[1] = 0.0;

/* Fill input vectors */

eci _vector[0][0]
eci _vector[0][1]
eci _vector[0][2]

1413531.574; /* ECl X pos, meters */
-6005427.214; /* ECl Y pos, neters */
-2693615.671; /* ECl Z pos, neters */

eci _vector[1][0] = -0.153457; /* ECl unit vector */
eci _vector[1][1] = 0.482829;
eci _vector[1][2] = 0.862164;

/* Get ORB vector */

returnStatus = PGS_CSC_ECIt oORB(spacecraftl D, nunVal ues,
ascii UTC_A, tinme_offset, eci_vector,
orb_vector);

/* Matrix orb_vector now contains the follow ng val ues:

Since the first input vector was a spacecraft epheneris

ECl vector, the ORB frane vector is the zero vector:

orb_vector[0][0] = 0.000 ORB X pos, neters

orb_vector[0][1] = 0.000 ORB Y pos, neters

orb_vector[0][2] = 0.000 ORB Z pos, neters

The second vector is a unit vector:

orb_vector[1][0] = 0.228986
orb_vector[1][1] = -0.545405
orb_vector[1][2] = 0.806287

*/

FORTRAN example:
I MPLI CI' T NONE

I NCLUDE ' PGS_CSC 4. f'
I NCLUDE ' PGS_EPH 5. f'
I NCLUDE ' PGS_SMF. f '

I NCLUDE ' PGS_TD. f'
I NCLUDE ' PGS_TD 3. f'

I NTEGER pgs_csc_ecitoorb

| NTEGER spacecraftid

I NTEGER nunval ues

CHARACTER* 27 asciiutc_a

DOUBLE PRECI SI ON tinme_of fset (2)
DOUBLE PRECI SI ON eci _vector (3, 2)
DOUBLE PRECI SI ON orb_vector (3, 2)
I NTEGER r et ur nst at us

Begi n exanpl e

Assign spacecraft |ID tag
PGSd_EOCS_AM and PGSd_EOS PM are al so al | oned

spacecraftid = PGSd_TRW

! Define base tinme and offsets desired

! Base tine is given in CCSDS ASCII Time code A format;
! CCSDS ASCII Tinme code B format is also allowed

! Ofsets are in seconds

|

nunval ues = 2

asciiutc_a = '1998-06-30T10: 51: 28. 320000Z'
time_offset(1l) = 0.0

tinme_offset(2) = 0.0

' Fill input vectors
eci _vector(1,1)

eci _vector(2,1)
eci _vector(3,1)

1413531.574 | ECI X pos, neters
-6005427.214 ! ECl Y pos, neters
-2693615.671 ! ECI Z pos, neters

eci _vector(1,2) = -0.153457 ! ECl unit vector
eci _vector(2,2) = 0.482829
eci _vector(3,2) = 0.862164

I Get ORB vector

returnstatus = pgs_csc_ecitoorb(spacecraftid, nunval ues,
+ asciiutc_a, time_offset, eci_vector,
+ orb_vector)

! Matrix orb_vector now contains the follow ng val ues:

! Since the first input vector was a spacecraft epheneris
I ECI vector, the ORB frane vector is the zero vector:

! orb_vector(1,1)
! orb_vector(2,1)
! orb_vector(3,1)

.000 ORB X pos, neters
.000 ORB Y pos, neters
.000 ORB Z pos, neters

o
ooo

! The second vector is a unit vector:

! orb_vector(1,2) = 0.228986
! orb_vector(2,2) = -0.545405
! orb_vector(3,2) = 0.806287

Files:
This tool accesses the following files:

® |eap seconds
® spacecraft ephemeris/attitude

The physical references to these files are defined in the Process Control File (PCF) template supplied with the Toolkit, SPGSRUN/PCF.v5. If you are
using a PCF derived from that template, you need not do anything extra to enable access to these files.
See sec. 3.1.2, Constructing your Process Control file, for information about PCF entries.

The exception is the spacecraft ephemeris/attitude file, which must be created by you for testing purposes at the SCF. Simulated files may be
prepared through use of the orbsim utility; (sec. 7.1.2.1); alternatively, you may prepare them yourself (sec. 7.1.2.2).

This file must follow the ephemeris file naming convention, and must reside in directory $PGSDAT/EPH. This directory is specified in $PGSRUN/PCF.
v5; individual spacecraft ephemeris/attitude filenames are not entered in the PCF.

11.2.5 PGS_CSC_ECItoSC

Short explanation of what it's for: Convert a vector in Earth Centered Inertial (ECI) coordinates to Spacecraft (SC) reference frame coordinates .
This function is in file: $PGSSRC/CSC/PGS_CSC_ECItoSC.c
Examples:

Two ECI vectors containing position are converted to two SC vectors.
The first is a spacecraft ephemeris ECI vector in meters; the second is a unit vector.

C example:

#i ncl ude <PGS_CSC. h>

PGSt _tag spacecraftlD;

PGSt _i nt eger nunVal ues;

char ascii UTC_Al 28] ;

PGSt _doubl e time_offset[2];
PGSt _doubl e eci _vector[2][3];

PGSt _doubl e sc_vector[2][3];

PGSt _SMF_st at us returnStat us;
/-k

Begi n exanpl e

*/

/* Assign spacecraft ID tag
PGSd_ECS_AM and PGSd_EOS PM are al so all owed */

spacecraftl D = PGSd_TRW
/* Define base tine and offsets desired
Base time is given in CCSDS ASCI| Tine code A fornat;
CCSDS ASCII Time code B format is also allowed
O fsets are in seconds */

nunVal ues = 2;

strcpy(ascii UTC_A, "1998-06-30T10: 51: 28. 320000Z") ;
time_offset[0] = 0.0;

tine_offset[1] = 0.0;

/* Fill input vectors */

eci _vector[0][0]
eci _vector[0][1]
eci _vector[0][2]

1413531.574; /* ECl X pos, meters */
-6005427.214; /* ECl Y pos, neters */
-2693615.671; /* ECl Z pos, neters */

eci _vector[1][0] = -0.153457, /* ECl unit vector */
eci _vector[1][1] = 0.482829;
eci _vector[1][2] = 0.862164;

/* Get SC vector *

—~

returnStatus = PGS_CSC ECIt oSC(spacecraftl D, nunVal ues,
ascii UTC_A, tinme_offset, eci_vector,
sc_vector);

/* Matrix sc_vector now contains the follow ng val ues:

Since the first input vector was a spacecraft epheneris
ECl vector, the S/C frane vector is the zero vector:

sc_vector[0] [0]
sc_vector[0][1]
sc_vector[0][2]

0.000 SC X pos, neters
0.000 SC Y pos, neters
0.000 SC Z pos, neters

The second vector is a unit vector:

sc_vector[1][0] = 0.228986
sc_vector[1][1] = -0.545405
sc_vector[1][2] = 0.806287

*/

FORTRAN example:
I MPLI CI' T NONE

I NCLUDE ' PGS_CSC 4. f'
I NCLUDE ' PGS_EPH 5. f'
I NCLUDE ' PGS_SMF. f '

I NCLUDE ' PGS_TD. f'
I NCLUDE ' PGS_TD 3. f'

I NTEGER pgs_csc_ecitosc

| NTEGER spacecraftid

I NTEGER nunval ues

CHARACTER* 27 asciiutc_a

DOUBLE PRECI SI ON tinme_of fset (2)
DOUBLE PRECI SI ON eci _vector (3, 2)
DOUBLE PRECI SI ON sc_vector (3, 2)
I NTEGER r et ur nst at us

Begi n exanpl e

Assign spacecraft |ID tag
PGSd_EOCS_AM and PGSd_EOS PM are al so al | oned

spacecraftid = PGSd_TRW

! Define base tinme and offsets desired

! Base tine is given in CCSDS ASCII Time code A format;
! CCSDS ASCII Tinme code B format is also allowed

! Ofsets are in seconds

|

nunval ues = 2

asciiutc_a = '1998-06-30T10: 51: 28. 320000Z'
time_offset(1l) = 0.0

tinme_offset(2) = 0.0

' Fill input vectors
1413531.574 ! ECI X pos, neters

-6005427.214 | ECI Y pos, neters
-2693615.671 | ECI Z pos, neters

eci _vector(1,1)
eci _vector(2,1)
eci _vector(3,1)

eci _vector(1,2) = -0.153457 ! ECl unit vector
eci _vector(2,2) = 0.482829
eci _vector(3,2) = 0.862164

I Get SC vector

returnstatus = pgs_csc_ecitosc(spacecraftid, nunval ues,
+ asciiutc_a, time_offset, eci_vector,
+ sc_vector)

! Matrix sc_vector now contains the follow ng val ues:

! Since the first input vector was a spacecraft epheneris
I ECl vector, the S/C frane vector is the zero vector:

! sc_vector(1,1)
! sc_vector(2,1)
! sc_vector(3,1)

0.000 SC X pos, neters
0.000 SC Y pos, neters
0.000 SC Z pos, neters

! The second vector is a unit vector:

! sc_vector(1,2) = 0.228986
! sc_vector(2,2) = -0.545405
! sc_vector(3,2) = 0.806287

Notes:
Aberration is taken into account in the transformation.

When the input vector is in meters, translation from earth center to spacecraft origin is accounted for.
No translation is done when the input vector is a unit vector.

Files:

This tool accesses the following files:

® |eap seconds
® spacecraft ephemeris/attitude

The physical references to these files are defined in the Process Control File (PCF) template supplied with the Toolkit, SPGSRUN/PCF.v5. If you are
using a PCF derived from that template, you need not do anything extra to enable access to these files.

See sec. 3.1.2, Constructing your Process Control file, for information about PCF entries.

The exception is the spacecraft ephemeris/attitude file, which must be created by you for testing purposes at the SCF. Simulated files may be
prepared through use of the orbsim utility; (sec. 7.1.2.1); alternatively, you may prepare them yourself (sec. 7.1.2.2).

This file must follow the ephemeris file naming convention, and must reside in directory $PGSDAT/EPH. This directory is specified in $PGSRUN/PCF.
v5; individual spacecraft ephemeris/attitude filenames are not entered in the PCF.

11.2.6 PGS_CSC_ECRtoECI

Short explanation of what it's for: Convert a vector in Earth Centered Rotating (ECR) coordinates to Earth Centered Inertial (ECI) coordinates .
This function is in file: $PGSSRC/CBP/PGS_CSC_ECRtoECI.c

Examples:

Two ECR vectors containing position and velocity are converted to two ECI vectors.

C example:

#i ncl ude <PGS_CSC. h>

PGSt _i nt eger

nunval ues;

char ascii UTC_Al 28] ;
PGSt _doubl e time_offset[2];
PGSt _doubl e ecr_vector[2][6];

PGSt _doubl e eci _vector[2][6];

PGSt _SMF_st at us returnStat us;

/*
Begi n exanpl e
*/
/*

CCSDs AsCl |

Time code B fornmat

O fsets are in seconds */

nunVal ues = 2;

time_of fset[0]
time_of fset[1]

strcpy(ascii UTC_

A
0.
1.

Define base time and offsets desired
Base time is given in CCSDS ASCl |

Time code A fornmat;

is also allowed

"1998- 06- 30T10: 51: 28. 320000Z") ;

0;
0

/* Fill input vectors */

ecr_vector[0][0] = -4245958.362002; /* ECR X pos, neters */
ecr_vector[0][1] = 3583944.541294; [* ECRY pos, meters */
ecr_vector[0][2] = -3802636.071286; /* ECR Z pos, neters */
ecr_vector[0][3] = -4259.539749; /* ECR X vel, meters/sec */
ecr_vector[0][4] = -5857.188662; /* ECR X vel, meters/sec */
ecr_vector[0][5] = -765.490907 ; /* ECR Z vel, meters/sec */

ecr_vector[1][0]
ecr_vector[1][1]
ecr_vector[1][2]
ecr_vector[1][3]
ecr_vector[1][4]
ecr_vector[1][5]

/*

returnStatus =

/* Matrix eci_vector

eci _vector[0][0]
eci _vector[0][1]
eci _vector[0][2]
eci _vector[0][3]
eci _vector[0][4]
eci _vector[0][5]

eci _vector[1][0]
eci _vector[1][1]
eci _vector[1][2]
eci _vector[1][3]
eci _vector[1][4]
eci _vector[1][5]

*/

FORTRAN example:

-4250215. 575857
3578085. 340407
-3803399. 079548
-4254. 887147
-5861. 211973
-760. 525446

Get ECI vector */

-4191102. 083176
-3647080. 063050
- 3803463. 200778
5402. 13704
-5411. 637312
-764. 857061

-4185697. 218627
-3652489. 325640
-3804225. 574655
5407. 590883
-5406. 886691
- 759. 890523

PGS_CSC_ECRt oECI (nunVal ues,
tine_of fset,

now contains the follow ng

asci i UTC_A,
ecr_vector, eci_vector);

val ues:

ECI X pos, neters

ECl Y pos, neters

ECl Z pos, neters
ECI X vel, neters/sec
ECl Y vel, neters/sec
ECl Z vel, neters/sec

I MPLI CI T NONE

I NCLUDE ' PGS_SMF. f'

I NCLUDE ' PGS_TD 3. f*
I NCLUDE ' PGS_CSC 4. f'

I NTEGER pgs_csc_ecrtoeci

I NTEGER nunval ues

CHARACTER* 27 asciiutc_a

DOUBLE PRECI SI ON tinme_of fset (2)
DOUBLE PRECI SI ON ecr _vector (6, 2)

DOUBLE PRECI SI ON eci _vector (6, 2)
I NTEGER r et ur nst at us

! Begin exanple

! Define base tinme and offsets desired

! Base tine is given in CCSDS ASCII Time code A format;
! CCSDS ASCII Tine code B format is also allowed

! Ofsets are in seconds

|

nunval ues = 2
asciiutc_a =
time_offset(1l) =
tinme_offset(2) =

' 1998-06-30T10: 51: 28. 320000Z'
=0.0
1.0

! Fill input vectors

ecr_vector(1,1) = -4245958.362002 ! ECR X pos, neters
ecr_vector(2,1) = 3583944.541294 ! ECR Y pos, neters
ecr_vector(3,1) = -3802636.071286 ! ECR Z pos, neters
ecr_vector(4,1) = -4259.539749 ! ECR X vel, neters/sec
ecr_vector(5,1) = -5857.188662 ! ECRY vel, neters/sec
ecr_vector(6,1) = -765.490907 I ECR Z vel, neters/sec
ecr_vector(1,2) -4250215. 575857

ecr_vector(2,2)
ecr_vector(3,2)

3578085. 340407
- 3803399. 079548

ecr _vector(4,2) -4254. 887147
ecr_vector (5, 2) -5861. 211973
ecr_vector (6, 2) -760. 525446

! Get ECI vector

returnstatus = pgs_csc_ecrtoeci (nunval ues, asciiutc_a,

+ tine_offset, ecr_vector, eci_vector)
! Matrix eci_vector now contains the follow ng val ues:
! eci_vector(1,1) = -4191102. 083176 ECI X pos, neters
! eci_vector(2,1) = -3647080. 063050 ECl Y pos, neters
! eci_vector(3,1) = -3803463.200778 ECl Z pos, neters
| eci_vector(4,1) = 5402.137043 ECI X vel, neters/sec
! eci_vector(5,1) = -5411.637312 ECl Y vel, neters/sec
! eci_vector(6,1) = -764.857061 ECl Z vel, neters/sec

-4185697. 218627
- 3652489. 325640
-3804225. 574655
5407. 590883
-5406. 886691
-759. 890523

eci _vector(1,2)
eci _vector(2,2)
eci _vector(3,2)
eci _vector(4,2)
eci _vector (5, 2)
eci _vector (6, 2)

Notes:

Epoch for the ECI output vector is J2000.

Precession, nutation, and polar motion are all taken into account in the transformation.
Files:

This tool accesses the following files:

® |eap seconds
® polar motion and UT1-UTC

The physical references to these files are defined in the Process Control File (PCF) template supplied with the Toolkit, SPGSRUN/PCF.v5. If you are
using a PCF derived from that template, you need not do anything extra to enable access to these files.
See sec. 3.1.2, Constructing your Process Control file, for information about PCF entries.

11.2.7 PGS_CSC_ECRtoGEO

Short explanation of what it's for: Convert a vector in Earth Centered Rotating (ECR) coordinates to Geodetic (GEO) coordinates: latitude,
longitude, and altitude.

This function is in file: $PGSSRC/CBP/PGS_CSC_ECRtoGEO.c
Examples:

A single ECR position vector is converted to geodetic coordinates.
C example:

#i ncl ude <PGS_CSC. h>

PGSt _doubl e ecr_vector[3];
char earthMdel [21];

PGSt _doubl e | ongi t ude;
PGSt _doubl e | atitude;
PGSt _doubl e al titude;

PGSt _SMF_st at us returnStatus;
/*

Begi n exanpl e

*/

/* Fill input vector */
ecr_vector[0]

ecr_vector[1]
ecr_vector[2]

- 4245958, 362002; /* ECR X pos, neters */
3583944.541294; /* ECR Y pos, neters */
- 3802636.071286; /* ECR Z pos, neters */

/* Define earth reference nodel */

strcpy(earthModel, "WGS84");

/* Get long, lat, alt */

returnStatus = PGS_CSC _ECRt oGEQ(ecr_vector, earthModel,
& ongi tude, & atitude, &altitude);

/* The followi ng val ues are returned:

| ongi tude = 2.440543 radi ans
latitude = -0.603131 radi ans
altitude = 361674. 209546 neters

*/

FORTRAN example:

I MPLI CI' T NONE

I NCLUDE ' PGS_SMF. '

I NCLUDE ' PGS_CSC 4. f'

I NTEGER pgs_csc_ecrtogeo

DOUBLE PRECI SI ON ecr _vector (3)
CHARACTER* 20 eart hnodel

DOUBLE PRECI SI ON | ongi t ude
DOUBLE PRECI SI ON | ati t ude
DOUBLE PRECI SI ON al titude
I NTEGER r et ur nst at us

! Begin exanple

! Fill input vector

ecr _vector (1)
ecr_vector(2)
ecr_vector(3)

-4245958. 362002 ! ECR X pos, neters
3583944. 541294 | ECR Y pos, neters
-3802636. 071286 ! ECR Z pos, neters

! Define earth reference nodel
eart hnodel = ' WGS84'
! Get long, lat, alt
returnstatus = pgs_csc_ecrtogeo(ecr_vector, earthnodel,

+ | ongitude, latitude, altitude)

! The followi ng val ues are returned:

! longitude = 2.440543 radi ans
! latitude = -0.603131 radi ans
! altitude = 361674. 209546 neters

Notes:
Input ECR vector must be in meters; it may not be a unit vector.
Files:
This tool accesses the following file:
® earth axis data
The physical reference to this file is defined in the Process Control File (PCF) template supplied with the Toolkit, SPGSRUN/PCF.v5. If you are using a

PCF derived from that template, you need not do anything extra to enable access to this file.
See sec. 3.1.2, Constructing your Process Control file, for information about PCF entries.

11.2.8 PGS_CSC_GEOtoECR

Short explanation of what it's for: Convert a vector in Geodetic (GEO) coordinates (latitude, longitude, and altitude) to Earth Centered Rotating
(ECR) coordinates .

This function is in file: $PGSSRC/CBP/PGS_CSC_GEOtoECR.c
Examples:
A single set of geodetic latitude, longitude, and altitude is converted to an ECR position vector.

C example:

#i ncl ude <PGS_CSC. h>

PGSt _doubl e | ongi t ude;
PGSt _doubl e | atitude;
PGSt _doubl e al titude;
char earthModel [21];

PGSt _doubl e ecr_vector[3];
PGSt _SMF_st at us returnStat us;
/*

Begi n exanpl e

*/

/* Define input values */

I ongi tude = 2. 440543 /* radians */
latitude = -0.603131 /* radians */
altitude = 361674.209546 /* neters */

/* Define earth reference nodel */
strcpy(earthModel, "WGS84");
/* Get ECR coordinates */
returnStatus = PGS_CSC GEQ oECR(| ongitude, |atitude,

al titude, earthnodel, ecr_vector);
/* Vector ecr_vector now contains the follow ng val ues:
ecr_vector[0]

ecr_vector[1]
ecr_vector[2]

-4245955. 860673 ECR X pos, neters
3583944. 676007 ECR Y pos, neters
-3802638. 720370 ECR Z pos, neters

*/

FORTRAN example:
I MPLI CI' T NONE
I NCLUDE ' PGS_SMF. f'
I NCLUDE ' PGS_CSC 4. f'
I NTEGER pgs_csc_geot oecr
DOUBLE PRECI SI ON | ongi t ude
DOUBLE PRECI SI ON | atitude
DOUBLE PRECI SION al titude
CHARACTER* 20 eart hnodel
DOUBLE PRECI SI ON ecr _vector (3)
I NTEGER r et ur nst at us

! Begin exanple

! Define input values

I ongi tude = 2.440543 ! radians
latitude = -0.603131 ! radi ans
altitude = 361674.209546 ! neters

| Define earth reference nodel
eart hnodel = ' WGS84'

I CGet ECR coordinates
returnstatus = pgs_csc_geotoecr(|ongitude, |atitude,
+ altitude, earthnodel, ecr_vector)
! Vector ecr_vector now contains the follow ng val ues:
! ecr_vector (1)

! ecr_vector(2)
! ecr_vector(3)

-4245955. 860673 ECR X pos, neters
3583944. 676007 ECR Y pos, neters
-3802638. 720370 ECR Z pos, neters

Files:

This tool accesses the following file:

® earth axis data

The physical reference to this file is defined in the Process Control File (PCF) template supplied with the Toolkit, SPGSRUN/PCF.v5. If you are using a
PCF derived from that template, you need not do anything extra to enable access to this file.
See sec. 3.1.2, Constructing your Process Control file, for information about PCF entries.

11.2.9 PGS_CSC_GetFOV_Pixel

Short explanation of what it's for: Determine where a field-of-view (FOV) projects on the earth's surface. Also return the pixel vectors in ECR for
further use in the tool PGS_CSC_ZenithAzimuth() if desired. The field-of-view is specified by spacecraft frame pixel vectors.

This function is in file: $PGSSRC/CBP/PGS_CSC_GetFOV_Pixel.c
Examples:
Data about the earth projection of a square field of view is computed; taken from the LIS instrument.

C example:

#i ncl ude <PGS_CSC. h>

PGSt _tag spacecraftlD;

PGSt _i nt eger nunVal ues;

char ascii UTC_Al 28] ;

PGSt _doubl e time_offset[4];

char earthModel [21];

PGSt _bool ean accuracy_fl ag;

PGSt _doubl e sc_| ook_vector[4][3];
PGSt _doubl e sc_offset[4][3];

PGSt _doubl e | atitude[4];

PGSt _doubl e | ongi tude[4];

PGSt _doubl e ecr_unit_vector[4][3];
PGSt _doubl e range[4];

PGSt _doubl e range_rate[4];

PGSt _SMF_st atus returnStatus;

PGSt _integer i,j;
/*

Begi n exanpl e

*/

/* Assign spacecraft ID tag
PGS_dECS_AM and PGSd_EOS PM are al so all owed */

spacecraft| D = PGSd_TRWM

/* Define base tine and offsets desired.
Base time is given in CCSDS ASCI| Tine code A fornat;
CCSDS ASCIlI Time code B format is also allowed.
O fsets in seconds are all set to 0.0 as we want a
snapshot of the FOV. In general, when many tines are to
be processed, for staring instrunents, the individual
pi xel vectors will still be fixed in the spacecraft
frame, while for slewi ng instruments they nust accurately
reflect the scan */

nunmval ues = 4;

strcpy(ascii UTC_A, "1998-06-30T10: 51: 28. 320000Z") ;

for (i=0;i<nunValues;i++) tine_offset[i] = 0.0;

/* Define earth reference nodel */

strcpy(earthModel, "W3S84");

/* Set accuracy flag:
Use PGS_FALSE for faster conputation if you
don't care either about Earth rotation during the |ight
travel tine or your instrument's offset from Spacecraft
center.

Use PGS_TRUE if you want to account for the
earth's rotation during the light travel tine. */

accuracy_flag = PGS_TRUE;
/* Fill S/ICfrane vectors that define the field-of-view

You could also use this to refer to individual pixels of
your instrument. */

sc_l ook_vector[0][0] = -0.534711; /* S/C frame X conponent */
sc_l ook_vector[0][1] = 0.534711; /* S/C frame Y conponent */
sc_l ook_vector[0][2] = 0.654345; /* S/C frane Z conponent */
sc_l ook_vector[1][0] = -0.534711;

sc_l ook_vector[1][1] = -0.534711;

sc_l ook_vector[1][2] = 0.654345;

sc_l ook_vector[2][0] = 0.534711;

sc_l ook_vector[2][1] = -0.534711;

sc_l ook_vector[2][2] = 0.654345;

sc_l ook_vector[3][0] = 0.534711;

sc_l ook_vector[3][1] = 0.534711 ;

sc_l ook_vector[3][2] = 0.654345;

/* Set the pixel offsets. These are for high accuracy; they locate
the origin of a pixel with respect to the center-of-nmass of the
spacecraft. Here we assunme the instrunment boresight is 15 neters
off nominal center in the -y (orbit normal) direction. This array
is used only if accuracy_flag is equal to PGS_TRUE.

Naturally, only the part of the offset perpendicular to the
boresight direction itself matters. */

for (i=0;i<4;i++)

sc_offset[i][0] = 0.0;
sc_offset[i][1] = -15.0;
sc_offset[i][2] = 0. 0;

/* When accuracy_flag = PGS_FALSE you can Zero out instrunent
offsets, as they are not used, or you can ignore themand (in C
pass in a NULL pointer for the boresight offsets. (In FORTRAN
pass in anything - for exanple, 0.0)*/

/* Get data about the FOV projection on the earth */

returnStatus = PGS_CSC Get FOV_Pi xel (spacecraft! D, nunVal ues,
ascii UTC_A, tinme_offset, earthMdel,
accuracy_flag, sc_look_vector, sc_offset,
latitude, longitude, ecr_unit_vector,
range, range_rate);

/* The followi ng values are returned:

Latitudes of the FOV projection on the earth (radians):

latitude[0] = -0.478822
latitude[1] = -0.392320
latitude[2] = -0.350126
latitude[3] = -0.434660

Longi tudes of the FOV projection on the earth (radians):

I ongi tude[0] = -2.780467
| ongi tude[1] = -2.825456
longi tude[2] = -2.734285
| ongi tude[3] = -2.685652

ECR reference frame representation of the input FOV vectors
ecr_unit_vector[0][0] 0. 73373160233 ECR X conponent
ecr_unit_vector[0][1] 0. 55040569686 ECR Y conponent
ecr_unit_vector[0][2] -0.39836102296 ECR Z conponent

ecr_unit_vector[1][0] = 0.20219599731
ecr_unit_vector[1][1] = 0.85458983269
ecr_unit_vector[1][2] = 0.47832310892
ecr_unit_vector[2][0] = 0.38065007636
ecr_unit_vector[2][1] = -0.10337164875
ecr_unit_vector[2][2] = 0.91892318591
ecr_unit_vector| = 0.91220027384

= -0.40756416996

3][0]
ecr_unit_vector[3][1]
31[2]

ecr_unit_vector[0. 04221501817

Di stance from spacecraft to earth intersection pt, neters

range[0] = 570980. 678
range[1] = 564761.571
range[2] = 565402. 381
range[3] = 571415. 889

Vel ocity of the intersection pt in the ECR frane,
projected along the | ook vector direction, neters/sec

range_rate[0] = 3991.164
range_rate[1l] = 3786.974
range_rate[2] = -4008.894
range_rate[3] = -3804.699
*/
FORTRAN example:
I MPLI CI' T NONE
I NCLUDE ' PGS_SMF. f'
I NCLUDE ' PGS_TD. f
I NCLUDE ' PGS_TD_3. f'
I NCLUDE ' PGS_CSC 4. f
I NCLUDE ' PGS_EPH_5. f
| NTEGER

Begi

Assi

I NTEGER
I NTEGER

spacecraftid
nunval ues

CHARACTER* 27 asciiutc_a
DOUBLE PRECI SI ON tinme_of fset (4)
CHARACTER* 20 eart hnodel

I NTEGER accuracy_fla
DOUBLE PRECI SI ON
DOUBLE PRECI SI ON

DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE

PRECI SI ON
PRECI SI ON
PRECI SI ON
PRECI SI ON
PRECI SI ON

I NTEGER r et ur nst at us
INTEGER i, j
n exanpl e

gn spacecraft ID tag

g

pgs_csc_get f ov_pi xel

| atitude(4)
| ongi t ude(4)
ecr_unit_vector(3,4)
range(4)
range_rate(4)

sc_| ook_vector (3, 4)
sc_of fset(3,4)

PGSd_EOCS_AM and PGSd_EOS_PM are al so al | oned

spacecraftid

PGSd_TRWM

Define base time and of fsets desired.
Base time is given in CCSDS ASCI |

CCSDS ASCI |

O fsets are in seconds.

nunval ues
asciiutc_a

4

do i =1, nunval ues

tinme_offset(i)

enddo

0.

0

Ti ne code B fornat

Define earth reference nodel

Set

ear t hivbdel ' WGS84'

accuracy flag

is

' 1998-06-30T10: 51: 28

Time code A format;
al so al | oned.

. 3200007

Use PGS_TRUE if you want to account for the
earth's rotation during the
tine it takes light to travel

Fill

You could also use this to refer to individua
your

accuracy_flag = PGS_FALSE

S/C franme vectors that define the field-of-view

instrunent.

sc_l ook_vector(1,1)
sc_l ook_vector(2,1)
sc_|l ook_vector(3,1)

sc_l ook_vector(1,2)
sc_|l ook_vector (2, 2)
sc_l ook_vector(3,2)

sc_l ook_vector(1,3)
sc_l ook_vector(2,3)
sc_| ook_vector (3, 3)

sc_l ook_vector(1,4)
sc_|l ook_vector(2,4)

o o

. 534711
. 534711
. 654345

. 534711
. 534711
. 654345

. 534711
. 534711
. 654345

. 534711
. 534711

! S/IC frame X pos
! S/IC frame Y pos
! S/IC frame Z pos

pi xel s of

sc_l ook_vector(3,4) = 0.654345

! If the accuracy flag is set to PGS_FALSE, zero out instrunent
! offsets, as they are not used, and you can even |eave out the
! storage allocation and pass in anything.

! Set the pixel offsets. The are for high accuracy; they locate

! the origin of a pixel with respect to the center-of-nass of the

! spacecraft. Here we assune the instrument boresight is 15 neters
! off nominal center in the -y (orbit normal) direction. This array
! is used only if accuracy_flag is equal to PGS_TRUE.

do j=1,4
sc_offset(1,j) = 0.0
sc_offset(2,j) = -15.0
sc_offset(3,j) = 0.0
enddo

| Get earth intersection point data
returnstatus = pgs_csc_getfov_pixel (spacecraftid, numval ues,
asciiutc_a, time_offset, earthnodel,
| atitude, longitude, ecr_unit_vector,
range, range_rate)
! The followi ng values are returned:

Latitudes of the FOV projection on the earth (radians):

|

! latitude(1l) = -0.478822

! latitude(2) = -0.392320

! latitude(3) = -0.350126

! latitude(4) = -0.434660

! Longi tudes of the FOV projection on the earth (radi ans)
! longitude(l) = -2.780467

! longitude(2) = -2.825456

! longitude(3) = -2.734285

! longitude(4) = -2.685652

ECR reference frane representation of the input FOV vectors
ecr_unit_vector(1,1) = 0.73373160233 ECR X conponent

ecr_unit_vector(2,1)
ecr_unit_vector(3,1)

0. 55040569686 ECR Y comnponent
-0.39836102296 ECR Z conponent

! ecr_unit_vector(1,2) = 0.20219599731
! ecr_unit_vector(2,2) = 0.85458983269
! ecr_unit_vector(3,2) = 0.47832310892
! ecr_unit_vector(1,3) = 0.38065007636
! ecr_unit_vector(2,3) = -0.10337164875
! ecr_unit_vector(3,3) = 0.91892318591
! ecr_unit_vector(1,4) = 0.91220027384
! ecr_unit_vector(2,4) = -0.40756416996
! ecr_unit_vector(3,4) = 0.04221501817

Di stance from spacecraft to earth intersection pt, neters

|
! range(1l) = 570980.678
! range(2) = 564761.571
! range(3) = 565402. 381
! range(4) = 571415. 889

Vel ocity of the intersection pt in the ECR frane,
proj ected along the | ook vector direction, neters/sec
range_rate(1l) = 3991.164

range_rate(2) = 3786.974
range_rate(3) = -4008. 894
range_rate(4) = -3804.699

Notes:
For more information about the accuracy_flag argument, see the Notes section of the Toolkit Users Guide entry for this tool (sec. 6.3.3).

The output value ecr_unit_vector, the ECR frame representation of the input SC frame look vector, may be useful for several things, including use as
input to the tool PGS_CSC_ZenithAzimuth .

The values range and range_rate returned by this function are measures of the same data measured by Doppler radar instruments.

Files:

https://newsroom.gsfc.nasa.gov/sdptoolkit/primer/doc.html#UsersGuide
https://newsroom.gsfc.nasa.gov/sdptoolkit/primer/csc_ZenithAzimuth.html

This tool accesses the following files:

leap seconds

polar motion and UT1-UTC
earth model tags

spacecraft ephemeris/attitude

The physical references to these files are defined in the Process Control File (PCF) template supplied with the Toolkit, SPGSRUN/PCF.v5. If you are
using a PCF derived from that template, you need not do anything extra to enable access to these files.
See sec. 3.1.2, Constructing your Process Control file, for information about PCF entries.

The exception is the spacecraft ephemeris/attitude file, which must be created by you for testing purposes at the SCF. Simulated files may be
prepared through use of the orbsim utility; (sec. 7.1.2.1); alternatively, you may prepare them yourself (sec. 7.1.2.2).

This file must follow the ephemeris file naming convention, and must reside in directory $PGSDAT/EPH. This directory is specified in $PGSRUN/PCF.
v5; individual spacecraft ephemeris/attitude filenames are not entered in the PCF.

11.2.10 PGS_CSC_GreenwichHour

Short explanation of what it's for: Determine the hour angle of the vernal equinox at the Greenwich meridian.
This function is in file: $PGSSRC/CBP/PGS_CSC_GreenwichHour.c

Examples:

Two Greenwich hour angles are determined.

C example:
#i ncl ude <PGS_CSC. h>

PGSt _i nt eger nunVal ues;
char ascii UTC_ A 28];
PGSt _doubl e tine_offset[2];

PGSt _doubl e Greenw ch_Hour _Angl e[2] ;

PGSt _SMF_st at us returnStat us;
/-k

Begi n exanpl e

*/

/* Define tine requested */

nunVal ues = 2;

strcpy(ascii UTC A, "1998-06- 30T10: 51: 28. 320000Z");

time_of fset[O0]

A
0.
time_of fset[1] 1.

0
0

/* Get Greenwich hour angles */

returnStatus = PGS_CSC _Greenwi chHour (nunVal ues, ascii UTC_A,
tine_offset, Geenw ch_Hour_Angle);

/* Array G eenw ch_Hour_Angl e now contains the foll ow ng val ues:

Greenwi ch_Hour _Angl e[0]
Greenwi ch_Hour _Angl e[1]

5.411645; hours
5.411923; hours

*/

FORTRAN example:

I MPLI CI' T NONE

I NCLUDE ' PGS_SMF. f'

I NCLUDE ' PGS_CSC 4. f*

I NCLUDE ' PGS_TD 3. f'

I NTEGER pgs_csc_greenw chhour

I NTEGER nunval ues

CHARACTER* 27 asciiutc_a

DOUBLE PRECI SI ON ti me_of fset (2)

DOUBLE PRECI SI ON gr eenwi ch_hour _angl e(2)
I NTEGER r et ur nst at us

! Begin exanple

! Define tinme requested
nunval ues = 2
asciiutc_a = '1998-06-30T10: 51: 28. 3200002
time_offset(1l) = 0.0
tinme_offset(2) = 1.0
! Get Greenwich hour angles
returnstatus = pgs_csc_greenw chhour (nunval ues, asciiutc_a,
time_offset, greenw ch_hour_angle)

! Array greenwi ch_hour_angl e now contains the follow ng val ues:

5.411645; hours
5.411923; hours

! greenw ch_hour _angl e(1)
! greenw ch_hour _angl e(2)

Notes:

A value PGSd_GEO_ERROR_VALUE may be returned in the variable Greenwich_Hour_Angle of the example. This indicates an error determining
that value only; other elements of the output array are unaffected.

Files:
This tool accesses the following files:

® leap seconds
® polar motion and UT1-UTC

The physical reference to this file is defined in the Process Control File (PCF) template supplied with the Toolkit, SPGSRUN/PCF.v5. If you are using a

PCF derived from that template, you need not do anything extra to enable access to this file.
See sec. 3.1.2, Constructing your Process Control file, for information about PCF entries.

11.2.11 PGS_CSC_nutate2000

Short explanation of what it's for: Nutate State Vector Between J2000 and Ephemeris Time (ET).
This function is in file: $PGSSRC/CBP/PGS_CSC_nutate2000.c

Examples:

Nutate a vector from J2000 to celestial coordinates of date..

C example:

#i ncl ude <PGS_CSC. h>

PGSt _SMF_status returnStatus;

PGSt _doubl e j edTDB[2] ;
PGSt _doubl e dvnut[4];
PGSt _doubl e posVel [6] ;
jedTDB[0] = 2449720.5;
jedTDB[1] = 0. 25;

posVel [0] = 6400000. 0;
posVel [1] = -5000000. 0;
posVel [2] = 40000. 0;
posVel [3] = 4000. 0;
posVel [4] = 7000. 0;
posVel [5] = - 6000. 0;

/* get the nutation angles and rates */
PGS_CSC_wahr 2(j edTDB, dvnut) ;
/* nutate the vector */
returnStatus = PGS_CSC nut at e2000(6, j edTDB, dvnut , PGS_TRUE, posVel) ;

/* The input vector "posVel" has been overwitten with the nutated val ue:

posVel [0] = 6400276. 14364
posVel [1] = -4999643. 83137
posVel [2] = 40334. 16248
posVel [3] = 3999. 75622
posVel [4] = 7000. 00525
posVel [5] = - 6000. 15643
*/

FORTRAN example:

implicit none
I NCLUDE ' PGS_SMF. f'
I NCLUDE ' PGS_CSC 4. f'

i nteger pgs_csc_nut at e2000
i nteger pgs_csc_wahr 2

i nt eger returnstatus

i nteger threeor6

doubl e precision jedtdb(2)
doubl e precision dvnut(4)
doubl e precision frwd
doubl e precision posvel (6)

dat a j edt db/ 2449720. 5, 0. 25/
data posvel / 6400000. 0, - 5000000. 0, 40000. 0, 4000. 0, 7000. 0, - 6000. 0/

threeor6 = 6
frwd = PGS_TRUE

! get the nutation angles and rates
returnstatus = pgs_csc_wahr 2(j edt db, dvnut)
! nutate the vector

returnstatus = pgs_csc_nutat e2000(t hreeor 6, j edt db, dvnut, frwd,
+ posvel)

! the input vector "posvel" has been overwitten with the nutated val ue:

! posVel (1) = 6400276. 14364
! posVel (2) = -4999643. 83137
! posVel (3) = 40334. 16248
! posVel (4) = 3999. 75622
! posVel (5) = 7000. 00525
! posVel (6) = -6000. 15643
Notes:

Purpose: In the case of transforming from J2000, this function transforms a vector (position and velocity) after precession from J2000 to the correctly
nutated coordinates -- i.e. the rotation (or Z) axis is along the Earth's angular velocity and the X axis is toward the equinox of date. (Precession gives
the mean equinox of date and the program rotates a vector either to or from J2000, depending on the input flag.)

In the opposite case, in going from arbitrary epoch to J2000, this function nutates the vector to the "un-nutated" axis of date, after which it must be
precessed to J2000 by the function PGS_CSC_precs2000().

This code was modified so it now takes either a 3 or 6 dimensional vector. When 6 dimensions are used, they must be in the order (position, velocity)
because the transformation of velocity is slightly different. This function produces an output vector that overwrites the input vector. The code was kept
this way to preserve its heritage. The user is cautioned that her/his input vector will therefore be altered by this function. The underlying rotation
functions do not have this property.

11.2.12 PGS_CSC_ORBtoECI

Short explanation of what it's for: Convert a vector in Orbital (ORB) reference frame coordinates to Earth Centered Inertial (ECI) coordinates .
This function is in file: $PGSSRC/CBP/PGS_CSC_ORBtoECI.c

Examples:

Two ORB vectors containing position are converted to two ECI vectors.
The first is a spacecraft ephemeris ECI vector in meters; the second is a unit vector.

C example:
#i ncl ude <PGS_CSC. h>

PGSt _tag spacecraftlD;

PGSt _i nt eger nunVal ues;

char ascii UTC_A[28] ;

PGSt _doubl e tine_offset[2];
PGSt _doubl e orb_vector[2][3];

PGSt _doubl e eci _vector[2][3];

PGSt _SMF_st atus returnStatus;
/*

Begi n exanpl e

*/

/* Assign spacecraft |ID tag
PGSd_EOCS_AM and PGSd_EOS_PM are al so al |l owed */
spacecraft| D = PGSd_TRWM

/* Define base tinme and offsets desired
Base time is given in CCSDS ASCI| Tinme code A format;
CCSDS ASCII Time code B format is also allowed
O fsets are in seconds */

nunval ues = 2;

strcpy(ascii UTC_A, "1998-06-30T10: 51: 28. 320000Z2") ;
tine_offset[0] = 0.0;

tinme_offset[1] = 0.0;

/* Fill input vectors */

orb_vector[0][0]
orb_vector[0][1]
orb_vector[0][2]

0.000; /* ORB X pos, neters */
0.000; /* ORB Y pos, neters */
0.000; /* ORB Z pos, neters */

orb_vector[1][0] = 0.228986;
orb_vector[1][1] = -0.545405;
orb_vector[1][2] = 0.806287;

/* Get ECI vector */

returnStatus = PGS_CSC _ORBt oECI (spacecraftl D, nunVal ues,
ascii UTC_A, tinme_offset, orb_vector,
eci _vector);

/* Matrix eci_vector now contains the follow ng val ues:
eci _vector[0][0]
eci _vector[0][1]
eci _vector[0][2]

1413531. 574 ECI X pos, neters
-6005427.214 ECI Y pos, neters
-2693615.671 ECI Z pos, neters

eci _vector[1][0] = -0.153457 ECl unit vector
eci _vector[1][1] = 0.482829
eci _vector[1][2] = 0.862164

*/

FORTRAN example:

I MPLI CI' T NONE
I NCLUDE ' PGS_SMF. f'

I NCLUDE ' PGS_TD. f'

I NCLUDE ' PGS_TD 3. f'
I NCLUDE ' PGS_CSC 4. f'
| NCLUDE ' PGS_EPH 5. f'

I NTEGER pgs_csc_or bt oeci
I NTEGER spacecraftid
I NTEGER nunval ues
CHARACTER* 27 asciiutc_a
DOUBLE PRECI SI ON time_of fset (2)
DOUBLE PRECI SI ON orb_vector (3, 2)
DOUBLE PRECI SI ON eci _vector(3,2)
I NTEGER r et ur nst at us

Begi n exanpl e

Assi gn spacecraft ID tag
PGSd_EOCS_AM and PGSd_EOS_PM are al so al | oned

spacecraftid = PGSd_TRW

! Define base tinme and offsets desired

! Base tine is given in CCSDS ASCI| Tine code A fornat;
! CCSDS ASCII Tinme code B format is also allowed

! Ofsets are in seconds

]

nunval ues = 2

asciiutc_a = '1998-06-30T10: 51: 28. 3200002
tinme_offset(1l) = 0.0
time_offset(2) = 0.0

' Fill input vectors
orb_vector(1,1) = 0.000 ! ORB X pos, neters
orb_vector(2,1) = 0.000! ORB Y pos, neters
orb_vector(3,1) = 0.000! ORB Z pos, neters
orb_vector(1,2) = 0.228986
orb_vector(2,2) = -0.545405
orb_vector(3,2) = 0.806287

I Get SC vector

returnstatus = pgs_csc_orbtoeci (spacecraftid, nunval ues,
+ asciiutc_a, time_offset, orb_vector,
+ eci _vector)

! Matrix eci_vector now contains the follow ng val ues:
! eci _vector(1,1)

! eci _vector(2,1)
! eci _vector(3,1)

1413531. 574 ECl X pos, neters
-6005427. 214 ECl Y pos, neters
-2693615. 671 ECl Z pos, neters

! eci _vector(1,2) = -0.153457 ECl unit vector
! eci _vector(2,2) = 0.482829
! eci _vector(3,2) = 0.862164

Files:
This tool accesses the following files:

® |eap seconds
® spacecraft ephemeris/attitude

The physical references to these files are defined in the Process Control File (PCF) template supplied with the Toolkit, SPGSRUN/PCF.v5. If you are
using a PCF derived from that template, you need not do anything extra to enable access to these files.
See sec. 3.1.2, Constructing your Process Control file, for information about PCF entries.

The exception is the spacecraft ephemeris/attitude file, which must be created by you for testing purposes at the SCF. Simulated files may be
prepared through use of the orbsim utility; (sec. 7.1.2.1); alternatively, you may prepare them yourself (sec. 7.1.2.2).

This file must follow the ephemeris file naming convention, and must reside in directory $PGSDAT/EPH. This directory is specified in $PGSRUN/PCF.
v5; individual spacecraft ephemeris/attitude filenames are not entered in the PCF.

https://newsroom.gsfc.nasa.gov/sdptoolkit/primer/eph_overview.html#CreatingYourOwnFile

11.2.13 PGS_CSC_ORBt0SC
Short explanation of what it's for: Convert a vector in Orbital (ORB) reference frame coordinates to Spacecraft (SC) reference frame coordinates .
This function is in file: $PGSSRC/CBP/PGS_CSC_ORBtoSC.c
Examples:
Two ORB vectors containing position are converted to two SC vectors.
C example:
#i ncl ude <PGS_CSC. h>
PGSt _tag spacecraftlD;
PGSt _i nt eger nunVal ues;
char ascii UTC_A[28] ;
PGSt _doubl e tine_offset[2];
PGSt _doubl e orb_vector[2][3];
PGSt _doubl e sc_vector[2][3];
PGSt _SMF_st atus returnStatus;
/ *
Begi n exanpl e
*/
/* Assign spacecraft |ID tag
PGSd_EOCS_AM and PGSd_EOS_PM are al so all owed */
spacecraft| D = PGSd_TRWM

/* Define base tinme and offsets desired
Base time is given in CCSDS ASCI| Tinme code A format;
CCSDS ASCII Time code B format is also allowed
O fsets are in seconds */

nunval ues = 2;

strcpy(ascii UTC_A, "1998-06-30T10: 51: 28. 320000Z2") ;
tine_offset[0] = 0.0;

tinme_offset[1] = 0.0;

/* Fill input vectors */

orb_vector[0][0] = 0.000; /* ORB X pos, neters */

orb_vector[0][1] = 0.000; /* ORB Y pos, neters */

orb_vector[0][2] = 0.000; /* ORB Z pos, neters */

orb_vector[1][0] = 0.228986;

orb_vector[1][1] = -0.545405;

orb_vector[1][2] = 0.806287;

/* Get SC vector */

returnStatus = PGS_CSC _ORBt 0oSC(spacecraftlD, nunVal ues,
ascii UTC_A, tinme_offset, orb_vector,
sc_vector);

/* Matrix sc_vector now contains the follow ng val ues:

sc_vector[0][0] = 0.000 SC frane X pos, neters
sc_vector[0][1] = 0.000 SC frane Y pos, neters
sc_vector[0][2] = 0.000 SC frane Z pos, neters
sc_vector[1][0] = 0.228544 SC unit vector
sc_vector[1][1] = -0.548002

sc_vector[1][2] = 0.804649

*/

FORTRAN example:

I MPLICI T NONE

I NCLUDE ' PGS_SMF. f'

I NCLUDE ' PGS_TD. f'

I NCLUDE ' PGS_TD 3. f'
I NCLUDE ' PGS_CSC 4. f'
| NCLUDE ' PGS_EPH 5. f'

I NTEGER pgs_csc_or bt osc
I NTEGER spacecraftid
I NTEGER nunval ues
CHARACTER* 27 asciiutc_a
DOUBLE PRECI SI ON time_of fset (2)
DOUBLE PRECI SI ON orb_vector (3, 2)
DOUBLE PRECI SI ON sc_vector (3, 2)
I NTEGER r et ur nst at us

Begi n exanpl e

Assi gn spacecraft ID tag
PGSd_EOCS_AM and PGSd_EOS_PM are al so al | oned

spacecraftid = PGSd_TRW

! Define base tinme and offsets desired

! Base tine is given in CCSDS ASCI| Tine code A fornat;
! CCSDS ASCII Tinme code B format is also allowed

! Ofsets are in seconds

]

nunval ues = 2

asciiutc_a = '1998-06-30T10: 51: 28. 3200002
tinme_offset(1l) = 0.0
time_offset(2) = 0.0

' Fill input vectors
orb_vector(1,1) = 0.000 ! ORB X pos, neters
orb_vector(2,1) = 0.000! ORB Y pos, neters
orb_vector(3,1) = 0.000! ORB Z pos, neters
orb_vector(1,2) = 0.228986
orb_vector(2,2) = -0.545405
orb_vector(3,2) = 0.806287

I Get SC vector

returnstatus = pgs_csc_orbtosc(spacecraftid, nunval ues,
+ asciiutc_a, time_offset, orb_vector,
+ sc_vector)

! Matrix sc_vector now contains the follow ng val ues:
! sc_vector(1,1)

! sc_vector(2,1)
! sc_vector(3,1)

0. 000 SC X pos, neters
0. 000 SC Y pos, neters
0. 000 SC Z pos, neters

0.228544 SC unit vector
- 0. 548002
0. 804649

! sc_vector(1,2)
! sc_vector(2,2)
! sc_vector(3,2)

Files:
This tool accesses the following files:

® |eap seconds
® spacecraft ephemeris/attitude

The physical references to these files are defined in the Process Control File (PCF) template supplied with the Toolkit, SPGSRUN/PCF.v5. If you are
using a PCF derived from that template, you need not do anything extra to enable access to these files.
See sec. 3.1.2, Constructing your Process Control file, for information about PCF entries.

The exception is the spacecraft ephemeris/attitude file, which must be created by you for testing purposes at the SCF. Simulated files may be
prepared through use of the orbsim utility; (sec. 7.1.2.1); alternatively, you may prepare them yourself (sec. 7.1.2.2).

This file must follow the ephemeris file naming convention, and must reside in directory $PGSDAT/EPH. This directory is specified in $PGSRUN/PCF.
v5; individual spacecraft ephemeris/attitude filenames are not entered in the PCF.

11.2.14 PGS_CSC_precs2000

Short explanation of what it's for: Precesses a vector between TDB Julian Date and J2000 Coordinates.
This function is in file: $PGSSRC/CBP/PGS_CSC_precs2000.c

Examples:

Precess a vector from J2000 to celestial coordinates of date..

C example:
#i ncl ude <PGS_CSC. h>

PGSt _SMF_status returnStatus;

PGSt _doubl e j edTDB[2] ;
PGSt _doubl e posVel [6];
j edTDB[0] = 2449720.5;
jedTDB[1] = 0. 25;

posVel [0] = 6400000. 0;
posVel [1] = -5000000. 0;
posVel [2] = 40000. 0;
posVel [3] = 4000. 0;
posVel [4] = 7000. 0;
posVel [5] = - 6000. 0;

/* precess the vector */
returnStatus = PGS_CSC _precs2000(6, j edTDB, PGS_TRUE, posVel) ;

/* The input vector "posVel" has been overwitten with the nutated val ue:

posVel [0] = 6394430. 44572
posVel [1] = -5007144.69703
posVel [2] = 36895. 22797
posVel [3] = 4004. 90299
posVel [4] = 6995. 52993
posVel [5] = -6001. 94250
*/

FORTRAN example:

implicit none
I NCLUDE ' PGS_SMF. f'
I NCLUDE ' PGS_CSC 4. f*

i nteger pgs_csc_precs2000
i nt eger returnstatus
i nt eger threeor 6

doubl e precision jedtdb(2)
doubl e precision frwd
doubl e precision posvel (6)

dat a j edtdb/ 2449720. 5, 0. 25/
data posvel / 6400000. 0, - 5000000. 0, 40000. 0, 4000. 0, 7000. 0, - 6000. 0/

threeor6 = 6
frwd = PGS_TRUE

! nutate the vector
returnstatus = pgs_csc_nut at e2000(t hreeor 6, j edt db, f rwd, posvel)

! the input vector "posvel" has been overwitten with the nutated val ue:

! posVel (1) = 6394430. 44572
! posVel (2) = -5007144.69703
! posVel (3) = 36895. 22797
! posVel (4) = 4004. 90299
! posVel (5) = 6995. 52993
! posVel (6) = -6001. 94250
Notes:

This function is a simplified version of its precursor: PGS_CSC_precs3or6(). This function is specific to the case of precessing to or from the epoch of
J2000. The various coefficients used are the constants that result for this epoch.

This function produces an output vector that overwrites the input vector. The code was kept this way to preserve its heritage. The user is cautioned
that her/his input vector will be therefore be altered by this function. The underlying rotation functions do not have this property.

11.2.15 PGS_CSC_SCtoECI

Short explanation of what it's for: Convert a vector in Spacecraft (SC) reference frame coordinates to Earth Centered Inertial (ECI) coordinates .
This function is in file: $PGSSRC/CSC/PGS_CSC_SCtoECI.c
Examples:

Two SC vectors containing position are converted to two ECI vectors. The first is a spacecraft ephemeris SC vector in meters; the second is a unit
vector (directional data).

C example:
#i ncl ude <PGS_CSC. h>

PGSt _tag spacecraftlD;

PGSt _i nt eger nunVal ues;

char ascii UTC_A[28] ;

PGSt _doubl e tine_offset[2];
PGSt _doubl e sc_vector[2][3];

PGSt _doubl e eci _vector[2][3];

PGSt _SMF_st atus returnStatus;
/*

Begi n exanpl e

*/

/* Assign spacecraft |ID tag
PGSd_ECS_AM and PGSd_EOS_PM are al so al |l owed */
spacecraftl D = PGSd_TRW

/* Define base tinme and offsets desired
Base time is given in CCSDS ASCI| Tinme code A format;
CCSDS ASCII Time code B format is also allowed
O fsets are in seconds */

nunmval ues = 2;
strcpy(ascii UTC_A, "1998-06-30T10: 51: 28. 320000Z2") ;
0.0

tine_offset[0] = 0;
time_offset[1] = 0.0;
/* Fill input vectors */

sc_vector[0][0]
sc_vector[0][1]
sc_vector[0] [2]

.000; /* SC X pos, meters */
.000; /* SC Y pos, nmeters */
.000; /* SC Z pos, neters */

o n
ooo

.228986; /* SC frame X direction cosine */
.545405; /* SC frame Y direction cosine */
.806287; /* SC franme Z direction cosine */

sc_vector[1][0]
sc_vector[1][1]
sc_vector[1][2]

o n
'
[eNeNe]

/* Get ECI vector */

returnStatus = PGS_CSC_SCt oECI (spacecraft| D, nunVal ues,
ascii UTC_A, tinme_offset, sc_vector,
eci _vector);

/* Matrix eci_vector now contains the follow ng val ues:
eci _vector[0][0]
eci _vector[0][1]
eci _vector[0][2]

1413531. 574 ECI X pos, neters
-6005427.214 ECI Y pos, neters
-2693615.671 ECI Z pos, neters

eci _vector[1][0] = -0.153457 ECI X direction cosine
eci _vector[1][1] = 0.482829 ECl Y direction cosine
eci _vector[1][2] = 0.862164 ECl Z direction cosine

*/

FORTRAN example:

I MPLI CI' T NONE
I NCLUDE ' PGS_SMF. f'

I NCLUDE ' PGS_TD. f'

I NCLUDE ' PGS_TD 3. f'
I NCLUDE ' PGS_CSC 4. f'
| NCLUDE ' PGS_EPH 5. f'

I NTEGER pgs_csc_sct oeci
I NTEGER spacecraftid
I NTEGER nunval ues
CHARACTER* 27 asciiutc_a
DOUBLE PRECI SI ON time_of fset (2)
DOUBLE PRECI SI ON sc_vector (3, 2)
DOUBLE PRECI SI ON eci _vector(3,2)
I NTEGER r et ur nst at us

Begi n exanpl e

Assi gn spacecraft ID tag
PGSd_EOCS_AM and PGSd_EOS_PM are al so al | oned

spacecraftid = PGSd_TRW

! Define base tinme and offsets desired

! Base tine is given in CCSDS ASCI| Tine code A fornat;
! CCSDS ASCII Tinme code B format is also allowed

! Ofsets are in seconds

]

nunval ues = 2

asciiutc_a = '1998-06-30T10: 51: 28. 3200002
tinme_offset(1l) = 0.0
time_offset(2) = 0.0

' Fill input vectors
sc_vector(1,1) = 0.000 ! SC X pos, neters
sc_vector(2,1) = 0.000 ! SCY pos, neters
sc_vector(3,1) = 0.000 ! SC Z pos, neters

.228986 | SC franme X direction cosine
.545405 | SC frane Y direction cosine
.806287 ! SC franme Z direction cosine

sc_vector(1,2)
sc_vector(2,2)
sc_vector(3,2)

1no
'
[eNeoNe]

I Get EClI vector

returnstatus = pgs_csc_sctoeci (spacecraftid, nunval ues,
+ asciiutc_a, tinme_offset, sc_vector,
+ eci _vector)

! Matrix eci_vector now contains the follow ng val ues:
! eci_vector(1,1)

! eci_vector(2,1)
! eci_vector(3,1)

1413531. 574 ECI X pos, neters
-6005427.214 EC Y pos, neters
-2693615.671 ECI Z pos, neters

! eci_vector(1,2) = -0.153457 ECl X direction cosine
! eci_vector(2,2) = 0.482829 ECl Y direction cosine
| eci_vector(3,2) = 0.862164 ECl Z direction cosine

Not es:

Aberration is taken into account in the transformation.

The input vector may be given in meters or may be a unit vector. If the input vector is not a unit vector, translation from earth center to spacecraft
origin is accounted for.

No translation is done when the input vector is a unit vector.

Files:

This tool accesses the following files:

® |eap seconds
® spacecraft ephemeris/attitude

The physical references to these files are defined in the Process Control File (PCF) template supplied with the Toolkit, SPGSRUN/PCF.v5. If you are
using a PCF derived from that template, you need not do anything extra to enable access to these files.
See sec. 3.1.2, Constructing your Process Control file, for information about PCF entries.

The exception is the spacecraft ephemeris/attitude file, which must be created by you for testing purposes at the ECIF. Simulated files may be
prepared through use of the orbsim utility; (sec. 7.1.2.1); alternatively, you may prepare them yourself (sec. 7.1.2.2).

This file must follow the ephemeris file naming convention, and must reside in directory $PGSDAT/EPH. This directory is specified in $PGSRUN/PCF.
v5; individual spacecraft ephemeris/attitude filenames are not entered in the PCF.

11.2.16 PGS_CSC_SCtoORB

Short explanation of what it's for: Convert a vector in Spacecraft (SC) reference frame coordinates to Orbital (ORB) reference frame coordinates .
This function is in file: $PGSSRC/CSC/PGS_CSC_SCtoORB.c
Examples:

Two SC unit vectors containing position are converted to two ORB vectors.
C example:

#i ncl ude <PGS_CSC. h>

PGSt _tag spacecraftlD;

PGSt _i nt eger nunVal ues;

char ascii UTC_A[28] ;

PGSt _doubl e UTC of fset[2];

PGSt _doubl e sc_vector[2][3];

PGSt _doubl e orb_vector[2][3];

PGSt _SMF_st at us returnStat us;

/ *

Begi n exanpl e

*/

/* Assign spacecraft ID tag
PGSd_ECS_AM and PGSd_EOS PM are al so all owed */

spacecraft| D = PGSd_TRWM
/* Define base tinme and offsets desired
Base time is given in CCSDS ASCI| Tine code A fornat;
CCSDS ASCII Time code B format is also allowed
O fsets are in seconds */

nunmval ues = 2;

strcpy(ascii UTC_A, "1998-06-30T10: 51: 28. 320000Z") ;
tine_offset[0] = 0.0;

time_offset[1] = 0.0;

/* Fill input vectors */

sc_vector[0][0] = 0.000; /* SC frame X pos, neters */
sc_vector[0][1] = 0.000; /* SC frane Y pos, neters */
sc_vector[0][2] = 0.000; /* SC frame Z pos, neters */

sc_vector[1][0]
sc_vector[1][1]
sc_vector[1][2]

0.228544; [* SC unit vector */
. 548002;
0. 804649;

i n
'
o

/* Get ORB vector */

returnStatus = PGS_CSC SCt oORB(spacecraftl D, nunVal ues,
asci i UTC_A, UTC of fset, sc_vector,
orb_vector);

/* Matrix orb_vector now contains the follow ng val ues:
orb_vector[0][0]
orb_vector[0][1]
orb_vector[0][2]

0. 000 ORB X pos, neters
0. 000 ORB Y pos, neters
0. 000 ORB Z pos, neters

orb_vector[1][0] = 0.228986
orb_vector[1][1] = -0.545405
orb_vector[1][2] = 0.806287

*/

FORTRAN example:

I MPLI CI' T NONE
I NCLUDE ' PGS_SMF. f'

I NCLUDE ' PGS_TD. f'

I NCLUDE ' PGS_TD 3. f'
I NCLUDE ' PGS_CSC 4. f'
| NCLUDE ' PGS_EPH 5. f'

I NTEGER pgs_csc_sctoorb
I NTEGER spacecraftid
I NTEGER nunval ues
CHARACTER* 27 asciiutc_a
DOUBLE PRECI SI ON ut c_of f set (2)
DOUBLE PRECI SI ON sc_vector (3, 2)
DOUBLE PRECI SI ON orb_vector(3,2)
I NTEGER r et ur nst at us

Begi n exanpl e

Assi gn spacecraft ID tag
PGSd_EOS_AM and PGSd_EOS_PM are al so al | oned

spacecraftid = PGSd_TRW

! Define base tinme and offsets desired

! Base tine is given in CCSDS ASCI| Tine code A fornat;
! CCSDS ASCII Tinme code B format is also allowed

! Ofsets are in seconds

]

nunval ues = 2

asciiutc_a = '1998-06-30T10: 51: 28. 3200007

tinme_offset(1l) = 0.0

time_offset(2) = 0.0

' Fill input vectors

sc_vector(1,1) = 0.000 ! SC X pos, neters
sc_vector(2,1) = 0.000 ! SC Y pos, neters
sc_vector(3,1) = 0.000 ! SC Z pos, neters
sc_vector(1,2) = 0.228544 ! SC unit vector
sc_vector(2,2) = -0.548002
sc_vector(3,2) = 0.804649

I CGet ORB vector

returnstatus = pgs_csc_sctoorb(spacecraftid, nunval ues,
+ asciiutc_a, utc_offset, sc_vector,
+ orb_vector)

! Matrix orb_vector now contains the follow ng val ues:
! orb_vector(1,1)

! orb_vector(2,1)
! orb_vector(3,1)

0. 000 ORB X pos, neters
0. 000 ORB Y pos, neters
0. 000 ORB Z pos, neters

! orb_vector(1,2) = 0.228986
! orb_vector(2,2) = -0.545405
! orb_vector(3,2) = 0.806287

Files:
This tool accesses the following files:

® |eap seconds
® spacecraft ephemeris/attitude

The physical references to these files are defined in the Process Control File (PCF) template supplied with the Toolkit, SPGSRUN/PCF.v5. If you are
using a PCF derived from that template, you need not do anything extra to enable access to these files.
See sec. 3.1.2, Constructing your Process Control file, for information about PCF entries.

The exception is the spacecraft ephemeris/attitude file, which must be created by you for testing purposes at the SCF. Simulated files may be
prepared through use of the orbsim utility; (sec. 7.1.2.1); alternatively, you may prepare them yourself (sec. 7.1.2.2).

This file must follow the ephemeris file naming convention, and must reside in directory $PGSDAT/EPH. This directory is specified in $PGSRUN/PCF.
v5; individual spacecraft ephemeris/attitude filenames are not entered in the PCF.

11.2.17 PGS_CSC_PGS_CSC_SpaceRefract

Short explanation of what it's for: Estimate the refraction for a ray incident from space or a line of sight from space to the Earth's surface, based on
the unrefracted zenith angle.

This function is in file: $PGSSRC/CBP/PGS_CSC_SpaceRefract.c
Examples:
Estimate the refraction for a ray incident from space.

C example
#i ncl ude <PGS_CSC. h>

PGSt _SMF_status returnStatus;

PGSt _doubl e spaceZeni th;

PGSt _doubl e al titude;

PGSt _doubl e latitude; /* not inplenmented at present */
PGSt _doubl e surfacezZenith;

PGSt _doubl e di spl acenent ;

/*

Begi n exanpl e
*/

spaceZenith = 0.4; /* radians */
altitude = 5000.0; /* meters */

returnStatus = PGS_CSC SpaceRefract (spaceZenith,altitude,latitude,
&sur faceZenith, &i spl acement)

/* The foll owi ng values are returned:

surfaceZenith = 0.3999259828 Refracted Zenith Angle
di spl acenent = 0.0000001245

*/
FORTRAN example

I NCLUDE ' PGS_SMF. f
| NCLUDE ' PGS_TD. f '
I NCLUDE ' PGS_CSC 4. f'

inplicit none
i nteger pgs_csc_spacer efract
i nt eger returnstatus

doubl e precision spacezenith

doubl e precision altitude

doubl e precision latitude ! not inplenented at present
doubl e precision surfacezenith

doubl e precision displacenment

! Begin exanple

0.4 I radi ans
5000.0 ! neters

spacezenith
al titude

returnstatus = pgs_csc_spacerefract (spacezenith,altitude,|latitude,
+ surfacezenith, di spl acenent)

! The follow ng val ues are returned:

! surfacezenith = 0.3999259828 Refracted Zenith Angle
! di spl acenent = 0.0000001245

Not es:

This algorithm is intended as a mean-atmosphere approximation, valid for white light (for example, sunlight). Refraction is quite wavelength
dependent, and in the atmosphere it will also depend strongly on local conditions (the weather, e.g.). The present algorithm is intended to be a
reasonable approximation such that to do better one would need local and, for large zenith angles, regional weather.

The atmosphere model is used only to get the index of refraction at sea level. Latitude dependence is not implemented in the present version. Later,
the sea level temperature and mean scale height will be altered to become functions of latitude.

11.2.18 PGS_CSC_SubSatPoint

Short explanation of what it's for: Determine where a vector to the spacecraft normal to the earth ellipsoid intersects the earth's surface. This point
is called the sub-satellite point.
Velocity of this point is optionally determined along with the rate of change of altitude off the ellipsoid .

This function is in file: $PGSSRC/CBP/PGS_CSC_SubSatPoint.c
Examples:
Two intersection point coordinates and velocities are determined, one second of spacecraft ephemeris apart.

C example:

#i ncl ude <PGS_CSC. h>

PGSt _t ag spacecraftl D
PGSt _i nt eger numval ues;

char asci i UTC_A[28] ;
PGSt _doubl e tinme_offset[2];
char eart hModel [21] ;
PGSt _bool ean velocity_fl ag;
PGSt _doubl e latitude[2];
PGSt _doubl e | ongi tude[2] ;
PGSt _doubl e altitude[2];
PGSt _doubl e velocity[2][3];

PGSt _SMF_st atus returnStatus;

/~k
Begi n exanpl e
*/

/* Assign spacecraft ID tag
PGSd_ECS_AM and PGSd_EOS PM are al so all owed */

spacecraftl D = PGSd_TRW

/* Define base tine and offsets desired
Base time is given in CCSDS ASCI| Tine code A fornat;
CCSDS ASCII Time code B format is also allowed
O fsets are in seconds */

nunVal ues = 2;
strcpy(ascii UTC_A, "1998-06-30T10: 51: 28. 320000Z") ;
time_of fset[O0] 0.0;

time_of fset[1]

0;
1.0;
/* Define earth reference nodel */
strcpy(earthModel, "WGS84");

/* Set velocity flag to PGS_FALSE if you do not need the
velocity of the sub-satellite point */

velocity_flag = PGS_TRUE;

/* Get earth intersection point data */

returnStatus = PGS_CSC_SubSat Poi nt (spacecraft! D, nunVal ues,
ascii UTC_A, tinme_offset, earthModel, velocity_flag,
| atitude, longitude, altitude, velocity);

/* The followi ng val ues are returned:

latitude[0] = -0.413986 Intersection pt latitude, radi ans
I ongi tude[0] = -2.756803 Intersection pt |ongitude, radians
altitude[0] = 357223.526 Distance from spacecraft to

intersection pt, neters

Velocity of the intersection pt on the ellipsoid, neters/sec:

velocity[0][0] = 3268.458 North conponent

velocity[0][1] = 6082.756 East conponent

velocity[0][2] = -11.045 Rate of change of spacecraft
altitude relative to nadir

One second later:

latitude[1] = -0.413471
| ongi tude[1] = -2.755762
altitude[1] = 357212.480
velocity[1][0] = 3271.369
velocity[1][1] = 6081.213
velocity[1][2] = -11.046
*/

FORTRAN example:

I MPLICI T NONE

I NCLUDE ' PGS_SMF. f'

I NCLUDE ' PGS_TD. f'

I NCLUDE ' PGS_TD 3. f'
I NCLUDE ' PGS_CSC 4. f'
| NCLUDE ' PGS_EPH 5. f'

I NTEGER pgs_csc_SubSat Poi nt

| NTEGER spacecraftid

| NTEGER nunval ues
CHARACTER* 27 asciiutc_a
DOUBLE PRECI SI ON ti me_of f set (2)
CHARACTER* 20 ear t hnodel

| NTEGER velocity_flag

DOUBLE PRECI SI ON | ati t ude(2)
DOUBLE PRECI SI ON | ongi t ude(2)
DOUBLE PRECI SI ON al titude(2)
DOUBLE PRECI SI ON vel oci ty(3, 2)
I NTEGER r et ur nst at us
I NTEGER i, j

Begi n exanpl e

Assi gn spacecraft ID tag
PGSd_ECS_AM and PGSd_EOS PM are al so al | oned

spacecraftid = PGSd_TRW
Define base time and offsets desired
Base time is given in CCSDS ASCI| Tine code A fornat;

|
|
! CCSDS ASCII Tinme code B format is also allowed
I Ofsets are in seconds

|

nunval ues = 2
asciiutc_a = '1998-06-30T10: 51: 28. 320000Z'
time_offset(1l) = 0.0
tinme_offset(2) = 1.0
! Define earth reference nodel
eart hvbdel = ' WGS84'

! Set velocity flag to PGS_FALSE if you do not need the
! velocity of the sub-satellite point

velocity_flag = PGS_TRUE
| Get earth intersection point data
returnstatus = pgs_csc_SubSat Poi nt (spacecraftid, numval ues,
+ asciiutc_a, time_offset, earthnodel, velocity_flag,

+ latitude, longitude, altitude, velocity)

! The followi ng val ues are returned:

! latitude(l) = -0.413986 Intersection pt latitude, radians
! longitude(l) = -2.756803 Intersection pt |ongitude, radians
! altitude(l) = 357223.526 Distance from spacecraft to

!

intersection pt, neters

velocity(1,1) 3268.458 North conponent

velocity(2,1) 6082. 756 East conponent

velocity(3,1) -11.045 Rate of change of spacecraft
altitude relative to nadir

Vel ocity of the intersection pt on the ellipsoid, neters/sec:

One second | ater:

|
I latitude(2) = -0.413471
! longitude(2) = -2.755762
! altitude(2) = 357212.480
! velocity(1,2) = 3271.369
! velocity(2,2) = 6081.213
! velocity(3,2) = -11.046

Notes:

This function returns an error value if any of the input values are invalid. Returned values are all set to PGSd_GEO_ERROR_VALUE in this case.

The intersection of the vector in question with the Earth's equatorial plane defines the geodetic latitude.
Files:

This tool accesses the following files:

leap seconds

polar motion and UT1-UTC

earth axis data
spacecraft ephemeris/attitude

The physical references to these files are defined in the Process Control File (PCF) template supplied with the Toolkit, SPGSRUN/PCF.v5. If you are
using a PCF derived from that template, you need not do anything extra to enable access to these files.

See sec. 3.1.2, Constructing your Process Control file, for information about PCF entries.

The exception is the spacecraft ephemeris/attitude file, which must be created by you for testing purposes at the SCF. Simulated files may be
prepared through use of the orbsim utility; (sec. 7.1.2.1); alternatively, you may prepare them yourself (sec. 7.1.2.2).

This file must follow the ephemeris file naming convention, and must reside in directory $PGSDAT/EPH. This directory is specified in $PGSRUN/PCF.
v5; individual spacecraft ephemeris/attitude filenames are not entered in the PCF.

11.2.19 PGS_CSC_wahr2

Short explanation of what it's for: Calculate Nutation Angles
This function is in file: $PGSSRC/CBP/PGS_CSC_wahr2.c
Examples:
Calculate Nutation Angles.
C example:
#i ncl ude <PGS_CSC. h>

PGSt _SMF_status returnStatus;

PGSt _doubl e j edTDB[2] ;

PGSt _doubl e dvnut[4];

j edTDBI[0]
j edTDB[1]

2449720.5;
0. 25;

/* get the nutation angles and rates */

PGS_CSC_wahr 2(j edTDB, dvnut) ;

/* Array dvnut now contains the follow ng val ues:

dvnut[0] = 0.00006040835 Nut ation in Longitude, radians
dvnut[1] = -0.00003607640 Nutation in Obliquity, radians
dvnut[2] = 0.00000000000333 Nutation rate in Longitude, radians/sec
dvnut[3] = 0.00000000000259 Nutation rate in Cbliquity, radians/sec

*/
FORTRAN example:
implicit none
| NCLUDE ' PGS_SMF. f'
I NCLUDE ' PGS_CSC_4. f'
i nteger pgs_csc_wahr 2
i nt eger returnstatus
doubl e precision jedtdb(2)
doubl e precision dvnut(4)
dat a j edt db/ 2449720. 5, 0. 25/
! get the nutation angles and rates

returnstatus = pgs_csc_wahr 2(j edtdb, dvnut)

! Array dvnut now contains the follow ng val ues:

! dvnut (1) = 0.00006040835 Nut ati on in Longitude, radians
! dvnut (2) = -0.00003607640 Nutation in Obliquity, radians
! dvnut (3) = 0.00000000000333 Nutation rate in Longitude, radians/sec
! dvnut (4) = 0.00000000000259 Nutation rate in Qoliquity, radians/sec

11.2.20 PGS_CSC_PGS_CSC_ZenithAzimuth

Short explanation of what it's for: Determines zenith angle and azimuth of an arbitrary vector at a given geographic position. The vector may be
either a look vector from the spacecraft to the earth, or the position vector of a celestial body .

This function is in file: $PGSSRC/CBP/PGS_CSC_ZenithAzimuth.c

Examples:

Two examples are given:

(1) For a single point on the earth, the zenith angle and azimuth of a spacecraft look vector are computed. Atmospheric refraction is accounted for.
This example assumes that the example given in tool PGS_CSC_GetFOV_Pixel has been run first.

(2) The zenith angle of the Sun at a surface point is calculated. To get the Sun ECR input vector, tools PGS_CBP_Earth_CB_Vector and PGS_CSC_E
CItoECR are called successively before the call to PGS_CSC_ZenithAzimuth.

C example 1: Zenith and azimuth of spacecraft look vector

#i ncl ude <PGS_CSC. h>

PGSt _doubl e ecr_vector[3];
PGSt _doubl e | atitude;

PGSt _doubl e | ongi t ude;
PGSt _doubl e al titude;

PGSt _tag vector_type;

PGSt _bool ean zenith_only;
PGSt _bool ean refraction;

PGSt _doubl e zeni th_angl e;
PGSt _doubl e azi mut hal _angl e;
PGSt _doubl e refracti on_decrease;

PiSSt _SMF_status returnStatus;

{Begi n exanpl e

*/

[***** Data fromthe exanpl e output of PGS _CSC Get FOV_Pi xel *****/
/* Define spacecraft |ook vector in ECR frame. */

0. 20219599731,
0. 85458983269;
0. 47832310892,

ecr_vector[0]
ecr_vector[1]
ecr_vector[2]

/* Define earth location for which zenith and azi nut hal
angl es desired */

latitude = -0.392320; /* geodetic latitude, radians */
| ongi tude = -2.825456; /* longitude, radians */

[***x** End data from PGS_CSC_Get FOV_Pi xel *****x*/

/* Now set the altitude of surface point off the geoid, in
neters (used only to estimate refraction, except in the
case of the Mwon, where it slightly affects the parall ax)

- user responsibility to provide this altitude (Tool kit
provi des DEM access in the AA tools) */

altitude = 0.0; /* altitude of surface point, meters off geoid */

/* Indicate that ecr_vector is a | ook vector
fromthe spacecraft.

See Notes for other possible values. */

vector _type = PGSd_LOCK;

/* We want both zenith and azinmuthal angles in this exanple */

zenith_only = PGS_FALSE;

/* Enabl e atnospheric refraction correction */

refraction = PGS_TRUE;

/* Get zenith and azi nuthal angles */

returnStatus = PGS_CSC _ZenithAzi nut h(ecr_vector, |atitude,

I ongi tude, altitude, vector_type,
zenith_only, refraction,
&z enith_angl e, &azi nut hal _angl e,
& efraction_decrease);
/* The followi ng val ues are returned:
zenith_angl e

azi mut hal _angl e
refracti on_decrease

0.919446 refracted angle in radi ans

1. 912980 radi ans

0. 000381 decrease in zenith angle
due to refraction, radi ans

*/

FORTRAN example 1: Zenith and azimuth of spacecraft look vector

https://newsroom.gsfc.nasa.gov/sdptoolkit/primer/csc_GetFOV_Pixel.html
https://newsroom.gsfc.nasa.gov/sdptoolkit/primer/csc_ZenithAzimuth.html#Notes

I MPLI CI T NONE
I NCLUDE ' PGS_SMF. f'
I NCLUDE ' PGS_CSC. f'
I NCLUDE ' PGS_CSC 4. f'
I NCLUDE ' PGS_CBP. f'

I NTEGER pgs_csc_zeni t hazi nut h

DOUBLE PRECI SI ON ecr_vector (3)
DOUBLE PRECI SION | atitude
DOUBLE PRECI SI ON | ongi t ude
DOUBLE PRECI SI ON al titude

| NTEGER vector _type

I NTEGER zenith_only

I NTEGER refraction

DOUBLE PRECI SI ON zenith_angl e

DOUBLE PRECI SI ON azi nut hal _angl e
DOUBLE PRECI SI ON refraction_decrease
I NTEGER r et ur nst at us

! Begin exanple

| **** Data taken fromthe exanpl e output of PGS _CSC Get FOV_Pi xel
! Define spacecraft |ook vector in ECR frame.
0.20219599731

0. 85458983269
0.47832310892

ecr_vector (1)
ecr_vector(2)
ecr _vector(3)

| Define earth location for which zenith and azi nut hal
! angl es desired

latitude = -0.392320 ! radi ans
| ongitude = -2.825456 ! radi ans

| **** End data from PGS_CSC Get FOV_Pi xel **xxxx
altitude = 0.0 ! altitude of surface point in neters off the geoid
! Indicate that ecr_vector is a | ook vector
! fromthe spacecraft.
! See Notes for other possible val ues.
vector _type = PGSd_LOXK
! W& want both zenith and azinuthal angles in this exanple
zenith_only = PGS_FALSE
! Enabl e atnospheric refraction correction
refraction = PGS_TRUE
! Get zenith and azi nuthal angles
returnStatus = pgs_csc_zenithazi muth(ecr_vector, |atitude,
| ongi tude, altitude, vector_type,
zenith_only, refraction,

zeni th_angl e, azinuthal _angl e,
refracti on_decrease);

+ o+ o+ o+

! The followi ng val ues are returned:

zenith_angl e
azi nut hal _angl e
refracti on_decrease

0. 919446 refracted angle in radians

1.912980 radi ans

0. 0003815 decrease in zenith angle
due to refraction, radians

C example 2: Zenith angle of Sun

#i ncl ude <PGS_CSC. h>
/* Needed for other Toolkit calls in this exanple: */
#i ncl ude <PGS_CBP. h>

char ascii UTC_Al 28] ;

PGSt _double time_offset[1];
PGSt _doubl e eci _vector_1[1][3];
PGSt _doubl e eci _vector_2[1][6];

https://newsroom.gsfc.nasa.gov/sdptoolkit/primer/csc_GetFOV_Pixel.html
https://newsroom.gsfc.nasa.gov/sdptoolkit/primer/csc_ZenithAzimuth.html#Notes

PGSt _doubl e ecr_vector_2[1][6];

PGSt _doubl e ecr_vector_1[3];
PGSt _doubl e | atitude;

PGSt _doubl e | ongi t ude;

PGSt _doubl e al titude;

PGSt _tag vector_type;

PGSt _bool ean zenith_only;
PGSt _bool ean refraction;

PGSt _doubl e zeni th_angl e;
PGSt _doubl e azi nut hal _angl e;
PGSt _doubl e refracti on_decrease;

PGSt _SMF_st atus returnStatus;
/*

Begi n exanpl e

*/

/* First get EClI vector of Sun at the given time */

strcpy(ascii UTC_A, "1998-06-30T10: 51: 28. 320000Z") ;
time_offset[0] = 0.0;

returnStatus = PGS_CBP_Earth_CB Vector(1, ascii UTC_A,
time_offset, PGSd_SUN, eci_vector_1);

/* Returned ECl vector in neters is

eci _vector_1[0][0] = -22436733432.493786
eci _vector_1[0][1] 138013995777. 10355
eci _vector_1[0][2] 59837305848. 062561
*/

/* Next translate this vector to ECR coordinates */
/* First copy it over into the correct form?*/

eci _vector_2[0][0]
eci _vector_2[0][1]
eci _vector_2[0][2]
eci _vector_2[0][3]
eci _vector_2[0][4]
eci _vector_2[0][5]

eci _vector_1[0][0];

eci _vector_1[0][1];

eci _vector_1[0][2];

0.0; /* velocity unused here */
0.0;

0.0;

returnStatus = PGS_CSC ECItoECR(1, ascii UTC A,
tine_offset, eci_vector_2, ecr_vector_2);

/* Returned ECR vector in neters is

ecr_vector_2[0][0] 132956286704. 040
ecr_vector_2[0][1] 43291706842. 577
ecr_vector_2[0][2] 59834999399. 742

ecr_vector_2[0][3] 0.0 vel ocity unused here
ecr_vector_2[0][4] 0.0
ecr_vector_2[0][5] 0.0

*/

/* Copy Sun ECR vector over into the correct form*/
ecr_vector_1[0] = ecr_vector_2[0][0];
ecr_vector_1[1] = ecr_vector_2[0][1];
ecr_vector_1[2] = ecr_vector_2[0][2];

/* Define earth location for which zenith and azi nut hal
angl es desired */

latitude = -.547103859146; [* geodetic latitude, radians */
| ongi tude = -.75014; /* | ongi tude, radians */
altitude = 0.0; /* altitude of surface point, nmeters */

/* Define type of input ecr_vector
(see Notes) */

vector _type = PGSd_SUN,

/* We want only zenith angle in this exanple */
zenith_only = PGS_TRUE;

/* Enabl e atnospheric refraction correction. */
refracti on = PGS_TRUE;

/* Get zenith and azi nuthal angles */

returnStatus = PGS_CSC ZenithAzi nuth(ecr_vector_1, |atitude,
I ongi tude, altitude, vector_type,

/* The follow ng val

zenith_angl e
azi mut hal _angl e
refraction_decrease

*/

zenith_only,

refraction,

& enith_angl e, &azi nmuthal _angl e,
& efraction_decrease);

ues are returned:

1. 392450
0.0

FORTRAN example 2: Zenith angle of Sun

I MPLI CI' T NONE

refracted angle in radi ans

0.001619 decrease in zenith angle
due to refraction,

radi ans

I NCLUDE ' PGS_SMF. f*
I NCLUDE ' PGS_CSC. f*

I NCLUDE ' PGS_CSC 4. f*
I NCLUDE ' PGS_CBP. f'
Needed for other Toolkit calls in this exanple:

Begi

I NCLUDE ' PGS_TD 3. f'

| NCLUDE ' PGS_CBP_

6. f'

I NTEGER pgs_csc_zeni t hazi nuth

CHARACTER* 28 asci
DOUBLE PRECI SI ON
DOUBLE PRECI SI ON
DOUBLE PRECI SI ON
DOUBLE PRECI SI ON

DOUBLE
DOUBLE

PRECI SI ON
PRECI SI ON
DOUBLE PRECI SI ON
DOUBLE PRECI SI ON
I NTEGER vector_typ
I NTEGER zeni t h_onl
I NTEGER refraction

iutc_a
tine_offset(1)
eci _vector_1(3,1)
eci _vector_2(6, 1)
ecr_vector_2(6,1)

e
y

ecr_vector_1(3)
| atitude

| ongi t ude

al titude

DOUBLE PRECI SI ON zenith_angl e
DOUBLE PRECI SI ON azi mut hal _angl e
DOUBLE PRECI SI ON refraction_decrease

I NTEGER r et ur nst at us

n exanpl e

First get

ECl vector of Sun at the given tine

asciiutc_a = '1998-06-30T10: 51: 28. 320000Z'

time_offset(1)

returnstatus =
+

Ret urned EClI vect

=0.0

pgs_cbp_earth_cb_vector(1, asciiutc_a,

tine_of f set,

or in neters is

PGSd_SUN, eci _vector_1)

eci _vector_1(1,1)
eci _vector_1(2,1)
eci _vector_1(3,1)

miuins

-22436733432. 493786
138013995777. 10355
59837305848. 062561

Next translate this vector to ECR coordinates

First copy it over

into

Ret

eci _vector_2(1,1)
eci _vector_2(2,1)
eci _vector_2(3,1)
eci _vector_2(4,1)
eci _vector_2(5,1)
eci _vector_2(6,1)

returnStatus =

urned ECR vector
ecr_vector_2(1,1)
ecr_vector_2(2,1)
ecr_vector_2(3,1)
ecr_vector_2(4,1)
ecr_vector_2(5,1)
ecr_vector_2(6, 1)

pgs_csc_ecitoecr(1,
tine_of fset,

the correct form

eci _vector_1(1,1)
eci _vector_1(2,1)
eci _vector_1(3,1)
0.0 !
0.0
0.0

in meters is

132956286704. 040
43291706842. 577
59834999399. 742
0.0
0.0
0.0

vel ocity unused here

eci _vector_2,

asciiutc_a,
ecr_vector_2)

vel ocity unused here

! Copy Sun ECR vector over into the correct form
ecr_vector_1(1) = ecr_vector_2(1,1)
ecr_vector_1(2) = ecr_vector_2(2,1)
ecr_vector_1(3) = ecr_vector_2(3,1)

| Define earth location for which zenith and azi nut hal
! angl es desired

latitude = -.547103859146 ! radians
I ongi tude = -.75014 I radi ans
altitude = 0.0 ! altitude of surface point off geoid, in neters

! Define type of input ecr_vector
! PGSd_MOON i s al so possible; other values are ignored
! (see Notes)
vector_type = PGSd_SUN
! W want only zenith angle in this exanple
zenith_only = PGS_TRUE
! Enabl e atnobspheric refraction correction
refraction = PGS_TRUE

! Get zenith and azi nuthal angles

returnStatus = pgs_csc_zenithazinuth(ecr_vector_1, |atitude,

+ | ongi tude, altitude, vector_type,
+ zenith_only, refraction,

+ zeni th_angl e, azinuthal _angl e,

+ refracti on_decrease);

! The followi ng values are returned:

zenith_angl e
azi mut hal _angl e
refracti on_decrease

1. 392450 refracted angle in radians

0.0

0. 001619 decrease in zenith angle
due to refraction, radians

Notes:
Input vector must be in ECR reference frame coordinates.
5th argument in calling sequence vector_type may be one of the following:

PGSd_LOOKUse this for a spacecraft look vector. A special value is necessary here because the direction of this vector is opposite that of a celestial
body vector.PGSd_MOONUSse this if the celestial body in question is the Moon. In this case parallax is taken into account and the input ECR vector
must be in meters (not a unit vector). The cb_id PGSd_MOON can be used for any near-Earth body (such as another spacecraft) ; it simply turns on
the parallax correction based on the WGS84 ellipsoid and the altitude. For this purpose, altitude ought to be off the ellipsoid, but use altitude from the
geoid if the refraction correction is turned on.PGSd_CB, or any other valid celestial body identifierUse this for any celestial body but the Moon.
Parallax is not taken into account. Other celestial body identifiers are given in the Notes section of PGS_CBP_Earth_CB_Vector (sec. 11.2.2).

12. 1/O Level 0 Access (I0_LO) Tools
12.1 1/O Level 0 Access (I0_L0) Tools Overview
12.1.1 Introduction

This section explains the usage of the I/O Level 0 data access tools.
These tools are mandatory for access to Level O data.

Level O data are raw science and engineering data received from either PACOR (for the TRMM spacecraft) or EDOS (for the EOS spacecrafts).

At the DAAC, these tools access LO files previously staged by the Planning and Data Production Sub-system (PDPS), as specified in the plan you
previously submitted.

At the SCF, you use either Toolkit modules or your own code to generate test LO input files.

The explanations given here apply to usage in the testing environment at the SCF; many details of processing at the DAAC are not yet known, but
these will be supplied where possible.

All of the data staged for a particular Application ID (APID) is considered by the Toolkit to be a "virtual data set". What this means to you is that even if
there is more than one physical file staged for that APID, you have relatively seamless access to all of that data.

You may use this software to both generate test data files, and to access data in your production code.

12.1.2 Constructing a test Level 0 data file
There are two ways to do this:

® Use the interactive utility LOSim
® Call the Toolkit function PGS_IO_LO_File_Sim

The first method is to run from the unix command prompt

uni x% $PGSBI N/ LOsi m

This utility will prompt you for input, such as file start and stop date, time interval between packets, APID, the name of a file containing simulated
packet data, etc.

For TRMM instruments, it creates an SDPF-TRMM format main data file, plus an SFDU header file.

EOS AM and PM file formats are not yet known (except for packet formats); for now, for the file header, we provide part of the TRMM file header as a
placeholder.

The second method involves your constructing a C or FORTRAN driver that calls PGS_IO_LO_File_Sim, which is the underlying function called by the
utility described above. This may be useful if you want to customize your test file. The same files that are created by LOsim are created here.

Note: TRMM files have a "footer", which consists of quality and missing data unit information. The internal structure of the footer is neither simulated,
nor is read access provided for it, in the TK5 version of this software.

12.1.3 Pseudo-code for Accessing LO Data

Now that you have prepared your test input file, you are ready to read it. Below we provide pseudo-code which gives an overall view of how this is
accomplished in your software.

Al locate nmenory for LO data you will be saving

Call PGS_IO LO_Open to get a virtual file handle,
start and stop tines of the available data

Determ ne the tinme range of the data you want to retrieve

If starting at some time other than the earliest tine available
Call PGS_10O LO_SetStart to begin at the desired start tine

End if

While still data in this virtual data set (APID) and/or tinme range

Call PGS_|1 O LO_CetHeader to retrieve header and footer
information fromthe current physical file

Unpack, save and/or process header and footer data
Wiile still packets in this physical file and/or tine range
Call PGS_I O LO_GetPacket to read a single LO packet
Unpack, save and/or process packet data
End while
End while

Call PGS 10 L0 Cose to close the virtual file

Notes:
The main Toolkit LO functions return file header, footer and individual packet data in a character buffer. It is your responsibility to unpack this data.

The function PGS_IO_L0_GetHeader returns data from the physical Level 0 data file that is currently open. It is necessary to call it each time the end
of a physical file is reached, if there is more than one such file per APID.

The pseudo-code shown is an example of processing a single Application ID (APID). Processing more than one APID could be done either
consecutively (by looping over the given pseudo-code) or concurrently (by opening more than one virtual data set at once with PGS_IO_L0_Open).

The Toolkit functions and the example algorithm take into account the fact that the staged data for a single APID may consist of more than one
physical file. This is not the case for TRMM, but may be for EOS AM and PM.

https://newsroom.gsfc.nasa.gov/sdptoolkit/primer/l0_File_Sim.html

Footer information is returned for TRMM files only.
Also, TRMM processing includes a "housekeeping file", which consists of data for several non-science APIDs. This file is treated as a single virtual
data set, just like science (single APID) files.

12.2 1/0 Level 0 Access (I0_LO0) Tool Descriptions

This section contains an alphabetical listing of the descriptions of the individual PGS_IO_LO_* tools.
12.2.1 PGS _10_LO Close

Short explanation of what it's for: Close a virtual Level 0 data set.

This function is in file: $PGSSRC/IO/LO/PGS_IO_LO_Close.c

Examples:

C example:

#i ncl ude <PGS_| O h>

PGSt _| O LO_Virtual DataSet virtual _file;

PGSt _SMF_st at us returnStat us;

returnStatus = PGS_I O LO_Cl ose(virtual _file);
FORTRAN exanpl e:

I MPLICI' T NONE

I NTEGER pgs_i o_I 0_cl ose
INTEGER virtual _file
| NTEGER r et ur nst at us

returnstatus = pgs_io_|0_close(virtual _file)

Notes:
After this function is called, the currently open physical file is closed, and the internal table entries for this virtual data set are deleted.

Function PGS_IO_LO_Open must have been called before this tool is used.

12.2.2 PGS_IO_LO_File_Sim

Short explanation of what it's for: Create a simulated Level 0 data file for use at the SCF.
This function is in file: $PGSSRC/IO/LO/PGS_IO_LO_File_Sim.c

Examples:

An EOS AM test file is generated, containing 1000 packets of different lengths and APIDs, starting at midnight June 1, 1999 and spaced at 1.024
second intervals.

C example:

#i ncl ude <PGS_I O h>
#define N 1000

PGSt _i nt eger appl DI N|;

PGSt _i nteger firstPacket Num = 1;
char *startUTC = "1999-06-01T00: 00: 00";
PGSt _i nt eger nunVal ues = N;

PGSt _double tinmelnterval = 1.024;
PGSt _i nt eger datalLength[N];

PGSt _i nteger dummyl[2];

char *filename = "EOCS_AM LO_test";
char appDat a[350000] ;

PGSt _ui nt eger dummy?2[2] ;

char *dummy3=NULL;

char *dummy4=NULL;

PGSt _i nteger i;
PGSt _SMF_st atus returnStatus;
/* Begin exanple */

/* Set APIDs and |engths of packet application data */
for (i=0;i<250;i++)

{
datalLength[i] = 200;
appl Di] = 80;
dat aLengt h[250+i] = 300;
appl D[250+i] = 81;
dat aLengt h[500+i] = 400;
appl D[500+i] = 82;
dat aLengt h[750+i] = 500;
appl D[750+i] = 83;

}

/* Fill appbData buffer as desired here.
Do not include packet header data; it is filled by this tool.
Fill bytes 1-200 with first packet application data,
bytes 201-400 with second packet application data, etc. */

/* Create sinulated file */
returnStatus = PGS_IO LO_File_Sin(ECS AM

appl D, firstPacketNum startUTC, nunVal ues,
tinelnterval, datalLength, dummyl, filenaneg,

appbData, dummy2, dummy3, dumy4);

/* File EOS_AM LO_test may now be used as input to
other LO Tool kit functions */

FORTRAN example:

I MPLICI' T NONE

| NCLUDE " PGS_SMF. f'
| NCLUDE " PGS_PC. f'

| NCLUDE "PGS_PC 9. f'
| NCLUDE " PGS_TD. f'

I NCLUDE "PGS_I O f'

| NCLUDE "PGS_10 1.

I NTEGER pgs_io_|0_file_sim

| NTEGER appi d(1000)

I NTEGER fi r st packet num
CHARACTER* 27 startutc

I NTEGER nunval ues

I NTEGER ti nei nterval

| NTEGER dat al engt h(1000)
I NTEGER dummy1(2)
CHARACTER* 256 fil enane
CHARACTER* 350000 appdat a
I NTEGER dummy2(2)
CHARACTER*1 dummy3
CHARACTER*1 dummy4

| NTEGER i
I NTEGER r et ur nst at us

! Begin exanple

firstpacketnum= 1

startutc = '1999-06-01T00: 00: 00. 000000’
nunval ues = 1000

tinmeinterval = 1.024

! Set APIDs and | engths of packet application data

do i =1, 250
datal ength(i) = 200
appid(i) = 80
dat al engt h(250+i) = 300
appi d(250+i) = 81
dat al engt h(500+i) = 400
appi d(500+i) = 82
dat al engt h(750+i) = 500
appi d(750+i) = 83

enddo

! Fill appdata buffer as desired here.

! Do not include packet header data; it is filled by this tool.
! Fill bytes 1-200 with first packet application data,

! bytes 201-400 with second packet application data, etc.

filename = 'EOS_AM LO_test'

returnstatus = pgs_io_|0_file_sin ECS_AM
appid, firstpacketnum startutc,
nunval ues, tineinterval, datal ength,
dummyl, filenanme, appdata,
dumy2, dummy3, dummy4)

++ + +

! File EOS_AM LO_test nay now be used as input to
! other LO Tool kit functions

Notes:

This tool is for use at the SCF only. It is not for use in production software.
It is being provided as a convenience to you; there is no Toolkit requirement for it or for LOsim.

The "dummy" arguments in the examples are used only for TRMM files.

For TRMM, the internal structure of the file footer (quality and missing data unit data) are not simulated.
Files:

This tool creates a simulated Level 0 data file of the specified name.
For TRMM, a Detached SFDU Header text file is also created.

12.2.3 PGS _10_L0O_GetHeader

Short explanation of what it's for: Read file header from the physical Level 0 data file currently open.
This function is in file: $PGSSRC/IO/LO/PGS_IO_LO_GetHeader.c

Examples:

Data is read from a physical file header and (TRMM) file footer.

C example:

#i ncl ude <PGS_I1 O h>

#def i ne HEADER BUFFER MAX 556
#defi ne FOOTER_BUFFER_MAX 100000

PGSt _| O LO_Virtual DataSet virtual _file;

PGSt _| O LO_Header header _buf f er [HEADER BUFFER_NAX] ;

PGSt _I O LO_Foot er footer_buffer[FOOTER BUFFER_MAX] ;

PGSt _SMF_st at us returnStat us;

returnStatus = PGS_| O LO_Get Header (virtual _file,
HEADER_BUFFER_MAX, header _buffer,
FOOTER_BUFFER_MAX, footer_buffer);

/* Unpack data returned in character buffer here */

FORTRAN example:

I MPLI CI T NONE
| NCLUDE " PGS_SMF. f
| NCLUDE " PGS_PC. f'

| NCLUDE "PGS_PC 9. f'
| NCLUDE " PGS_TD. f'

I NCLUDE "PGS_IO.f'

| NCLUDE "PGS_10 1. f'

I NTEGER pgs_i o_| 0_get header
INTEGER virtual _file
CHARACTER* 556 header _buffer
CHARACTER* 100000 f oot er _buffer
| NTEGER header _buf f er _max

I NTEGER f oot er _buf f er _max

I NTEGER r et ur nst at us

header _buf f er _max
f oot er _buf f er _max

556
100000

returnstatus = pgs_io_| 0_getheader(virtual _file,
+ header _buf fer_max, header_buffer,
+ footer_buffer_max, footer_buffer)

! Unpack data returned in character buffer here

Notes:

This function returns header and footer data in character (byte) buffers.
This data must be unpacked by the science software.

The last two arguments of this function are ignored for EOS AM and PM platforms.
Function PGS_IO_LO_Open must have been called before this tool is used.
Files:

This function accesses the Level 0 data file currently open for this virtual data set.

12.2.4 PGS _|0_LO_GetPacket
Short explanation of what it's for: Read a single CCSDS packet from a Level 0 data file.
This function is in file: $PGSSRC/IO/LO/PGS_IO_LO_GetPacket.c

Examples:

Examples show how to read all packet data in one physical TRMM Level 0 data file.

C example:

#i ncl ude <PGS_1 O h>

#defi ne PACKET_BUFFER_MAX 7132

PGSt | O LO_Virtual DataSet virtual _file;
PGSt _| O _LO_Packet packet _buf[PACKET_BUFFER_NMAX] ;

PGSt _i nt eger packet _| oop_fl ag;

PGSt _SMF_st at us returnStatus;

/*

packet _| oop_fl ag

Call PGS_|1 0O LO_Get Header here to read
header and (TRMM footer data */

1

whi | e(packet _| oop_f I ag)

{

}

returnStatus = PGS_I O LO_Get Packet (virtual _file,
PACKET_BUFFER_MAX, packet _buf);

if(returnStatus ! = PGS_S_SUCCESS)
{
if(returnStatus == PGS|I O M LO_HEADER CHANGED)
/* Qut of data in this physical file,
call PGS_I O LO_GetHeader and continue reading. */
Yoo
else if(returnStatus == PGSI O W LO_END OF_ VI RTUAL_DS)

/* Qut of data in this virtual data set */
packet _| oop_flag = O;

el se

{
}

/* Error handling goes here */

}

/* Unpack data returned in character buffer packet_buf here */

FORTRAN example:

inmplicit none

| NCLUDE

I NCLUDE ' PGS._|
I NCLUDE ' PGS_P!
I NCLUDE

| NCLUDE

I NCLUDE

I NTEGER pgs_i o_I| 0_get packet

I NTEGER virtual _file
CHARACTER* 7132 packet _buf

I NTEGER packet _| oop_fl ag
I NTEGER r et ur nst at us
packet loop_flag =1
do whil e(packet_loop_flag)
returnStatus = pgs_io_| 0_getpacket(virtual _file,
+ 7132, packet_buf)
if(returnStatus .ne. PGS_S SUCCESS) then
if (returnstatus .eq. PGSI O M LO_HEADER CHANGED) then
! Qut of data in this physical file,
! call PGS_| O LO_GCet Header and conti nue reading.
else if (returnstatus .eq. PGSIO WLO_END OF_VIRTUAL_DS) then
! End of this virtual data set
packet _| oop_flag = 0
el se
! Error handling goes here
end if
end if

! Unpack data returned in character buffer packet_buf here

end do

Notes:

This function returns packet data in character (byte) buffers.
This data must be unpacked by the science software.

The example shown is for TRMM, in which there is exactly one physical Level O data file for each virtual data set (Application ID). For EOS AM and
PM, there might be more than one physical file per APID.

In this case, each time PGSIO_M_L0_HEADER_CHANGED is returned by PGS_IO_L0_GetPacket, your software should loop back to call PGS_I10_L
0_GetHeader to read the new header information, then re-enter the packet read loop. When all physical files have been exhausted,
PGS_IO_LO_GetPacket returns PGSIO_W_LO_END_OF_VIRTUAL_DS.

Function PGS_IO_L0_Open must have been called before this tool is used.

Files:

This function accesses the Level 0 data file currently open for this virtual data set.

12.2.5 PGS_IO_LO_Open
Short explanation of what it's for: Open a virtual Level O data set.
This function is in file: $PGSSRC/IO/LO/PGS_IO_LO_Open.c
Examples:

A single LIS science APID (61) virtual data set is opened.
LIS (Lightning Imaging Sensor) is a TRMM instrument.

The examples assume the following entry in the Process Control File (PCF):

101| TRMM G0091_1997- 11- 01T00: 00: 00Z_DATASET V01 01| |
| | TRMM GD091_1997- 11- 01T00: 00: 00Z_SFDU V01 01| 1

(Entry must appear on a single line in the PCF.)

C example:

#i ncl ude <PGS_| O h>

#define SCI ENCE_FI LE 101

PGSt _| O LO_Virtual DataSet virtual _file;

PGSt _doubl e start_tine;

PGSt _doubl e stop_tine;

PGSt _SMF_st at us returnStat us;

/* Begin exanple */

returnStatus = PGS_| O LO_Open(SCI ENCE_FI LE, PGSd_TRwW
&irtual _file, &start_time, &stop_tine);

/* Virtual file handle virtual _file nmay now be used as i nput
to other LO access tools
start_tinme and stop_time now contain the start
and stop tines for all data staged for this APID,
in TAl seconds since Jan. 1, 1993 */

go to Notes

FORTRAN example:

I MPLI CI' T NONE

| NCLUDE " PGS_SMF. f '

| NCLUDE " PGS_PC. f'

| NCLUDE "PGS_PC 9. f*
| NCLUDE "PGS_TD. f'

| NCLUDE "PGS_IO.f'

| NCLUDE "PGS_10 1.
| NTEGER SCl ENCE_FI LE

PARAMETER (SCl ENCE_FI LE=101)
I NTEGER pgs_i o_| 0_open

INTEGER virtual _file
DOUBLE PRECI SION start _tine
DOUBLE PRECI SI ON stop_tine

| NTEGER r et ur nst at us
! Begin exanple

returnstatus = pgs_i o_| 0_open(SCI ENCE_FI LE,
+ PGSd_TRW virtual _file, start_time, stop_tine)

Virtual file handle virtual _file may now be used as i nput
to other LO access tools

start_tinme and stop_time now contain the start
and stop times for all data staged for this APID,
in TAl seconds since Jan. 1, 1993

Notes:

For TRMM, there is only one physical file per APID per day. In this case each virtual data set (APID) corresponds to exactly one physical file.
For EOS AM and PM, there may be more than one physical file per APID (virtual data set).

In the Process Control File entry given in the example, the file name in the next-to-last field is the TRMM SFDU header file, which is a file that contains
data associated with the given LO file. This function does not open or access SFDU files; use functions PGS_IO_PC_GetFileAttr or
PGS_IO_PC_GetFileByAttr to retrieve data from these files.

For the definition of the TAI time scale used, see sec. 9.1.2, Definition of Time Scales and Formats Used.

Files:

https://newsroom.gsfc.nasa.gov/sdptoolkit/primer/l0_Open.html#Notes

This tool provides access to all staged Level O files for the given PCF logical ID, which normally means a given Application ID (APID).
A logical ID may also be used for a TRMM housekeeping file, which contains many APIDs.

See sec. 3.1.2, Constructing your Process Control file, for information about PCF entries.

12.2.6 PGS_IO_LO_SetStart

Short explanation of what it's for: Set start time for reading staged Level O data.
This function is in file: $PGSSRC/IO/LO/PGS_IO_LO_SetStart.c
Examples:

Examples show how to start processing 20 minutes after the start of the Level 0 data.
The value of variable start_time is assumed as returned from PGS_IO_LO_Open.

C example:
#i ncl ude <PGS_1 0O h>

PGSt _| O LO_Virtual DataSet virtual _file;
PGSt _doubl e start_tine;

PGSt _SMF_st at us returnStat us;
returnStatus = PGS_| O LO_SetStart(virtual _file, start_tine+1200.0);

/* The virtual file pointer is now set to the desired tine */

FORTRAN example:

I MPLI CI' T NONE
| NCLUDE ' PGS_SMF. f*
I NCLUDE ' PGS_PC. f*

I NCLUDE ' PGS_PC 9. f'
I NCLUDE ' PGS_TD. f'
I NCLUDE ' PGS_I O. f '
I NCLUDE ' PGS_| O 1. f"

I NTEGER pgs_io_| 0_setstart

INTEGER virtual _file

DOUBLE PRECI SION start_tine

DOUBLE PRECI SI ON new_start_tine

I NTEGER r et ur nst at us

new start_tine = start_tine+1200.0

returnstatus = pgs_io_| 0_setstart(virtual _file,
+ new_ start_tinme)

! The virtual file pointer is now set to the desired tine
Not es:

Function PGS_IO_L0_Open must have been called before this tool is used.
Files:

This function accesses one or more staged Level 0 data files.

13. Constants and Unit Conversion (CUC) Tools

13.1 Constants and Unit Conversion (CUC) Tools Overview
13.1.1 Introduction

The tools in this section are used to access constants and unit conversion data. i.e., data required for production processing which is obtained from
independent standardized external sources.

These tools are optional, in the sense that you may use your own functions to access this data or hard code the values if you so desire.

13.1.2 Accessing Constants data

There is one Toolkit function which accesses Constants data, PGS_CUC_Cons. This function reads the value of a constant either from an official list
of constants supplied by the EOS Project Science Office, or from a file that you have constructed on your own.
As the official list has not been determined at this writing (March 1995), a dummy test file is included in the current Toolkit delivery.

13.1.3 Accessing Conversion data

There is one Toolkit function which accesses Conversion data, PGS_CUC_Conv. This function is used by the user to retrieve the relevant conversion
data to convert between two named units.

This function uses the freeware UdUnits software package from the University Corporation for Atmospheric Research (UCAR).

(C) Copyright 1992 UCAR/Unidata

Permission to use, copy, modify, and distribute this software and its documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies, that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of UCAR/Unidata not be used in advertising or publicity
pertaining to distribution of the software without specific, written prior permission. UCAR makes no representations about the
suitability of this software for any purpose. It is provided "as is" without express or implied warranty. It is provided with no
support and without obligation on the part of UCAR or Unidata, to assist in its use, correction, modification, or enhancement

13.2 Constants and Unit Conversion (CUC) Tool Descriptions

This section contains an alphabetical listing of the descriptions of the individual PGS_CUC_* tools.

13.2.1 PGS_CUC_Cons
Short explanation of what it's for: Retrieve the value of a constant from either a NASA-approved file or from your own file.
This function is in file: $PGSSRC/CUC/PGS_CUC_Cons.c

Examples:

Retrieve the value of test parameter "H" from the NASA-approved file.

Relevant to this example, the dummy test file contains the line

H = 31.567

C example:

#i ncl ude <PGS_CUC. h>
#defi ne OFFI Cl AL_CONSTANTS 10999 /* This never changes */

char *parm= "H';

PGSt _doubl e h;

PGSt _SMF_st atus returnStatus;

returnStatus = PGS_CUC_Cons(OFFI Cl AL_CONSTANTS, parm &h);

/* Variable h now contains the value 31.567 */

FORTRAN example:

I MPLI CI' T NONE

I NCLUDE ' PGS_CUC 11.f"
I NCLUDE ' PGS_SMF. f'

i nteger OFFI Cl AL_CONSTANTS
par amet er (OFFI C AL_CONSTANTS=10999)

i nteger pgs_cuc_cons

character*80 parm

doubl e precision h

i nteger returnstatus

parm="h'

returnstatus = pgs_cuc_cons(OFFI Cl AL_CONSTANTS, parm h)

C Variable h now contains the value 31.567

Notes:
For purposes of testing this tool, a dummy test file has been included in the current Toolkit delivery.
You may construct your own constants file for use by this function.
It need only be in PARAMETER = VALUE format, and defined in the Process Control file. (Note that IDs 10000 to 10999 are reserved for Toolkit use.)
Your file becomes part of the delivery of your PGE to the DAAC.
Files:
This tool accesses the following file:
® Dummy test constants file PGS_CUC_maths_parameters
The physical reference to this file is defined in the Process Control File (PCF) template supplied with the Toolkit, SPGSRUN/PCF.v5.

Its logical file ID in the PCF is 10999. Use this value in your code to enable access to this file.
See sec. 3.1.2, Constructing your Process Control file, for information about PCF entries.

13.2.2 PGS_CUC_Conv
Short explanation of what it's for: Retrieve parameters needed for units conversion.
This function is in file: $PGSSRC/CUC/PGS_CUC_Conv.c

Examples:

Convert 0.85 atmospheres to bars.

C example:

#i ncl ude <PGS_CUC. h>

char inpUnit[30];
char out Uni t[30];

PGSt _doubl e out Sl ope;
PGSt _doubl e out | ntercept;

PGSt _doubl e press_atm
PGSt _doubl e press_bar;

PGSt _SMF_st atus returnStatus;

strcpy(inpUnit, "atnt);
strcpy(outUnit, "bar");

/* Call Toolkit function to find the conversion paraneters */

returnStatus = PGS_CUC Conv(inpUnit, outUnit,
&out Sl ope, &outlntercept);

/* Variabl e out Sl ope now contains the value 1.013250 bar/atm */
/* Variable outlntercept now contains the value 0.000000 bar */

press_atm = 0. 85;
press_bar = outSlope * press_atm
/* Variable press_bar now contains the value 0.861262 bars */
FORTRAN example:
I MPLI CI' T NONE

I NCLUDE ' PGS_CUC 11.f"
I NCLUDE ' PGS_SMF. f'

i nt eger pgs_cuc_conv

character*30 inpunit
character*30 outunit

doubl e precision outslope
doubl e precision outintercept

doubl e precision press_atm
doubl e precision press_bar

i nteger returnstatus

inpunit = "atm
outunit = 'bar'

returnstatus = pgs_cuc_conv(inpunit, outunit,
out sl ope, outintercept)

/* Variabl e outslope now contains the val ue 1.013250 bar/atm */
/* Variable outintercept now contains the value 0.000000 bar */

press_atm = 0. 85D0
press_bar = outslope * press_atm

/* Variabl e press_bar now contains the value 0.861262 bars */
Not es:

This function makes use of the UdUnits ("Unidata Units") freeware package from UCAR.

(C) Copyright 1992 UCAR/Unidata

Permission to use, copy, modify, and distribute this software and its documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies, that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of UCAR/Unidata not be used in advertising or publicity
pertaining to distribution of the software without specific, written prior permission. UCAR makes no representations about the
suitability of this software for any purpose. It is provided "as is" without express or implied warranty. It is provided with no
support and without obligation on the part of UCAR or Unidata, to assist in its use, correction, modification, or enhancement.

Files:

This tool accesses the following file:

® Units conversion file udunits.dat

By default, this file is put in directory $PGSSRC/CUC/UDUNITS when the Toolkit is installed.

14. Geocoordinate Transformation (GCT) Tools

14.1 Geocoordinate Transformation (GCT) Tools Overview
14.1.1 Introduction

These tools provide an interface to initialize and perform Geocoordinate Transformations in the forward and inverse directions.

This software is based on the projections provided in the GCTP geo-coordinate transformation package provided by USGS.

14.1.2 Initialization of the tool

PGS_GCT_lInit must be used first, whenever you want to do a new kind of geocoordinate transformation. Each projection requires a number of
parameters to be initialized prior to use; this function provides the generic interface to perform these initializations.

14.1.3 Geocoordinate Transformations

There is one Toolkit function which performs the geocoordinate transformations, PGS_GCT_Proj. This Tool provides a general interface to perform
Geocoordinate Transformations in the forward/inverse directions, ie. from geographical coordinates (latitude , longitude) to Cartesian coordinates (x, y)
of the given projection.

Access to all projections defined in the GCTP package is provided. A list of these projections is given in the PGS_GCT_lInit Notes.

You must call PGS_GCT_Init prior to using this function.

The tool may be used to perform the same transformation several times, for the same parameters. If the same projection is used with different
parameters. PGS_GCT_Init must be called again.

This tool is so constructed so that new projections may be added easily.

14.2 Geocoordinate Transformation (GCT) Tool Descriptions

This section contains an alphabetical listing of the descriptions of the individual PGS_GCT_* tools.

14.2.1 PGS_GCT _Init

Short explanation of what it's for: Initializes the Toolkit for a given geo-coordinate projection and direction (forward or reverse).
This function is in file: $PGSSRC/CUC/PGS_GCT_lInit.c

Examples:

Examples initialize for polar stereographic projection transformations.

C example:

#i ncl ude <PGS_CCT. h>

PGSt _i nt eger projld;

PGSt _doubl e proj Parani 13];
PGSt _i nt eger directFl ag;
PGSt _i nteger i;

PGSt _i nteger returnStatus;

/* Define projection ID for Pol ar Sterographic projection.
List of projections is given in the Notes */

projld = PS;

/* Define input paraneters. */

for (i=0;i<13;i++) projParanfi] = 0.0;

/* Define axes of earth ellipsoid (neters) */

proj Paranf 0] = 6378137.0;
proj Paran{ 1] = 6356752. 3;

/* Define |ongitude down bel ow pole of map (radians) */
proj Paran{ 4] = -0.2;

/* Define latitude of true scale (radians) */

proj Paran{5] = 1.0;

/* Define false easting and northing (neters) */

proj Par anf 6]
proj Parani 7]

0.0
0.0;

/* Define direction of transformation: lat/long to nmap coords
(PGSd_GCT_I NVERSE gi ves the reverse transformation) */

direct Fl ag = PGSd_GCT_FORWARD;

/* Initialize for Polar Stereographic projection
transformations */

returnStatus = PGS_CCT_lnit(projld, projParam directFlag);
/* You may now call PGS_GCT_Proj to do transformations */

Fortran exanpl e:

IMPLICIT NONE INCLUDE 'PGS_GCT.f' INCLUDE 'PGS_GCT_12.f INCLUDE 'PGS_SMF-.f'integer pgs_gct_init integer projid double precision
projparam(13) integer directflag integer i integer returnstatus C Define projection ID for Polar Sterographic projection. C List of projections is given in
the Notes projid = PS C Define input parameters. do 10 i=1,13 projparam(i) = 0.0 10 continue C Define axes of earth ellipsoid (meters) projparam(1) =
6378137.0 projparam(2) = 6356752.3 C Define longitude down below pole of map (radians) projparam(5) = -0.2 C Define latitude of true scale
(radians) projparam(6) = 1.0 C Define false easting and northing (meters) projparam(7) = 0.0 projparam(8) = 0.0 C Define direction of transformation:
lat/long to map coords C (PGSd_GCT_INVERSE gives the reverse transformation) directflag = PGSd_GCT_FORWARD C Initialize for Polar
Stereographic projection C transformations returnstatus = pgs_gct_init(projid, projparam, directflag) C You may now call pgs_gct_proj to do
transformations

Notes:

This routine simply initializes the parameters required by a particular projection.
Actual transformations are done by PGS_GCT_Proj.

New projections may be added if desired.
IMPORTANT: All blank array elements must be set to zero by you.
Projection IDs (Name in parentheses)

UTM (Universal Transverse Mercator)
SPCS (State Plane Coordinates)
ALBERS (Albers Conical Equal Area)
LAMCC (Lambert Conformal Conic)
MERCAT (Mercator)

PS (Polar Stereographic)

POLYC (Polyconic)

EQUIDC (Equidistant Conic)

TM (Transverse Mercator)

STEREO (Stereographic)

https://newsroom.gsfc.nasa.gov/sdptoolkit/primer/gct_Init.html#Notes

LAMAZ (Lambert Azimuthal Equal Area)
AZMEQD (Azimuthal Equidistant)

GNOMON (Gnomonic)

ORTHO (Orthographic)

GVNSP (General Vertical Near-Side Perspective)
SNSOID (Sinusoidal)

EQRECT (Equirectangular)

MILLER (Miller Cylindrical)

VGRINT (Van der Grinten)

HOM (Hotine Oblique Mercator--HOM)

ROBIN (Robinson)

SOM (Space Oblique Mercator--SOM)

ALASKA (Modified Stereographic Conformal-- Alaska)
GOOD (Interrupted Goode Homolosine)

MOLL (Mollweide)

IMOLL (Interrupted Mollweide)

HAMMER (Hammer)

WAGIV (Wagner V)

WAGVII (Wagner VII)

OBLEQA (Oblated Equal Area)

14.2.2 PGS_GCT_Proj

Short explanation of what it's for: Perform a transformation for the geo-coordinate projection inititalized by PGS_GCT_Init.
This function is in file: $PGSSRC/CUC/PGS_GCT_Proj.c

Examples:

Examples perform polar stereographic projection transformations.
We assume that the example for PGS_GCT_Init has been run first.

C example:

#i ncl ude <PGS_CCT. h>

PGSt _i nt eger projld;

PGSt _i nt eger directFl ag;
PGSt _i nt eger nPts;

PGSt _doubl e | ongi t ude[2] ;
PGSt _doubl e | atitude[2];

PGSt _doubl e mapX[2] ;
PGSt _doubl e mapVY[2] ;
PGSt _i nt eger dummy|[2];

PGSt _i nt eger returnStatus;
/* Define projection |ID for Polar Sterographic projection.
PGS _GCT_Init must have been called previously
with the sane val ue.
Li st of projections is given in the PGS_GCT_Init Notes */
projld = PS;
/* Define direction of transformation: lat/long to nmap coords
PGS_CCT_I nit nust have been called previously
wi th the same value. */
direct Fl ag = PGSd_GCT_FORWARD;
/* Define lat/long (radians) for which to find map coordi nates */
nPts = 2;
| ongi tude[0] = 1.4;
latitude[0] = 0.2;
longitude[1] = -1.4;
latitude[1l] = 0.2;
/* Transformfromlat/long to map coords */

returnStatus = PGS_GCT_Proj (projld, directFlag, nPts,
| ongi tude, latitude, mapX, mapY, dummy);

/* Variabl es mapX and mapY now contain the foll ow ng val ues:

mapX[0] = 9580513. 1963976845 neters
mapX[1] = 279865. 7426374513 neters
mapY[0] = -8933221. 8612986654 neters
mapY[1] = -3473054. 1483063293 neters
*/

Fortran example:

I MPLI CI' T NONE

I NCLUDE ' PGS_GCT. '
| NCLUDE ' PGS_GCT_12. f
I NCLUDE ' PGS_SMF. f'

i nteger pgs_gct_proj

integer projid

integer directflag

integer nPts

doubl e precision |ongitude(2)
doubl e precision latitude(2)

doubl e precision mapx(2)
doubl e precision mapy(2)
doubl e precision dummy(2)

integer returnstatus

Define projection ID for Polar Sterographic projection.
PGS_CCT_Init nust have been called previously

with the sane val ue.

List of projections is given in the Notes

[eXeXeXe]

projid = PS

Define direction of transformation: lat/long to map coords
PGS_CCT_Init nust have been called previously
with the sane val ue.

[eXeXe]

directflag = PGSd_GCT_FORWARD
C Define lat/long (radians) for which to find map coordi nates

npts = 2
longitude(l) = 1.4
latitude(l) = 0.2
longitude(2) = -1.4
latitude(2) = 0.2

C Transformfromlat/long to nap coords

returnstatus = pgs_gct_proj(projid, directflag, npts,
| ongi tude, latitude, nmapx, mapy, dummy)

C Variabl es mapX and mapY now contain the foll owi ng val ues:
C mapX(1) = 9580513. 1963976845 neters

C mapX(2) = 279865.7426374513 neters

C mapY(1l) = -8933221.8612986654 neters

C mapY(2) = -3473054.1483063293 neters

Notes:

Function PGS_GCT_Init must have been called before this function is called.

Each time you want to change projections, or if you want to reverse the direction (from forward to reverse or vice-versa), you must call PGS_GCT_Init
again first.

Variable dummy used in the examples is used only for the UTM transformation, for zone number.

Appendix A. Sample Status Message Text File

BEGI N_FI LE_PROLOG

FI LENAME:
AVHRR. t Return code definitions for AVHRR
(SMF seed val ue 99)

DESCRI PTI O\:

This file contains PGS _SMF standard return code
definitions for the AVHRR code.

The file is intended to be used as input by the snfconpile
utility, which generates the PGS_99 nessage file, and the
PGS_PATHFI NDER_99. h header

file.

AUTHOR:
Tom At wat er

HI STORY:
19_Sep-1994 TWA Initial version

HEHRFHEHEHERERTRE TR SR TR RS

END_FI LE_PROLOG
BHAHHH

% NSTR = AVHRR

9% ABEL = PATHFI NDER

YSEED = 99

#

messages for all AVHRR code
#

PATHFI NDER_F_OPEN_BI N_OUT_FI LE

FATAL_ERRCR. . . error opening %
PATHFI NDER_F_OPEN_ANC _FI LE

FATAL ERROR...%s
PATHFI NDER_F_MEM ALLOC _FAI L

FATAL ERROR. .. allocating nmenory for %
PATHFI NDER_E_EPH_MEM ALLOC_FAI L

Error %
PATHFI NDER_F_OPEN_BI NARY_FI LE

FATAL_ERRCR. . .error opening binary file
PATHFI NDER_W CANT_WRI TE_LOG

WARNING Can't wite to log file
PATHFI NDER_F_NUM _GAC_FI LES

FATAL_ERROR. ..deternining no. gac files
PATHFI NDER_W CLOSE_GAC_FI LE

WARNI NG . . coul d not close last file
PATHFI NDER_F_OPEN_GAC FI LE

FATAL_ERRCR. .. Can't open gac file
PATHFI NDER_F_OPEN_PROCLOG FI LE

FATAL_ERRCR. . .error creating log file
PATHFI NDER_W READI NG _PC_FI LE

FATAL_ERROR. ..reading PC file: %
PATHFI NDER_W READ_REQ SI ZE_X

WARNI NG Error reading requested size x
PATHFI NDER_W READ REQ Sl ZE_Y

WARNI NG Error reading requested size x
PATHFI NDER_W READ_WAI T_TI ME

WARNI NG Error reading wait tinme
PATHFI NDER_F_OPEN_BI N_OUT_FI LE

FATAL_ERROR. . .error opening %
PATHFI NDER_F_PROC_I NI T_ERRCR

FATAL_ERRCR. . . %
PATHFI NDER_W NO_LOG FI LES

WARNI NG Probl em sending log files
PATHFI NDER_W NO PROC_LOG WARNI NG Probl em sending GSFC log file
PATHFI NDER_N_PROCESSI NG_DONE

SUCCESS: AVHRR conpl ete at %

Appendix B. Sample Process Control File (PCF)

Entries specific to the Pathfinder AVHRR/Land example in this Primer appear in bold.

Process Control File: Pathfinder AVHRR/ Land Tool kit Prototype
#
Environnent variable PGS_PC | NFO FILE nust point to this file
#

-~

SYSTEM RUNTI ME PARAMETERS

- S SOy U e
Production Run ID - unique production instance identifier
-
1
o s m e m e mmmm e e e
Software I D - unique software configuration identifier
i
1
#
? PRODUCT | NPUT FI LES
[next line is for default |ocation]
' ~/runtime
#
- e
Pat hfi nder AVHRR/ Land input files
- e
201| 87002002709. no9_gac] | |
401]| gol dt opol andsea8. bi n| |
402| gri dt onms_1987_sngl _nt wk |11
403| ephenB788.dat || ||| 1
404|tinecorr8788.dat|||||1
405| SDSannot ations.dat|||]|]1
406| HDFnet adata. dat | | ||| 1

glllll1

410| j an021987. procl o
#

#

H om s e m e e mm e e e
Tool kit product input files
i
#

- S SOy U e
These are actual ancillary data set files - supplied by ECS or
the user.

The following are supplied for purposes of tests and as a

useful set of ancillary data

The files will be located in $PGSHOVE/ runti ne.

#

WARNI NG DO NOT MODI FY DEFAULT FI LE LOCATI ON FOR TH S SECTI ON
unl ess you have relocated these data set files to the |ocation
specified by the location's new setting
-
10780| usatil el2| ||| 10751| 12

10780| usatil el1| ||| 10750| 11

10780| usatil el0| | | | 10749| 10

10780| usatil e9| ||| 10748| 9

10780| usatil e8| ||| 10747| 8

10780| usatil e7| ||| 10746| 7

10780| usatil e6| ||| 10745| 6

10780| usatil e5| ||| 10744| 5

10780| usatiled| ||| 10743]| 4

10780| usatil e3| ||| 10742| 3

10780| usatil e2| ||| 10741| 2

10780| usatil el| ||| 10740] 1

10951| mowel3a.ing|||]|]1

10952| owel3a.ing||||]1

10953| owel4d.ing||||]1

10954| owelddr.ing|||]|]1

10955| et op05.dat || ||| 1

10956| fnocazminmg| | ||| 1

10957| fnococming||||]1

10958 fnocpt.img||||]1

10959| fnocrdg.ing|||]]1

10960| fnocst.inmg|||||1

10961| fnocurb.img| ||| 1

10962| fnocwat . ing|||]]1

10963| fnocmax. imgs| ||| |1

10964| fnocmin.imgs|||]|]1

10965| fnocnod. inmgs| ||]| 1

10966| srzarea.img| | ||| 1

10967| srzcode.ing|||]|]1

10968| srzphas.img| | ||| 1

10969| srzslop.img| ||| 1

10970| srzsoil .inmg|||]]1

10971 srztext.ing|||]|]1

10972| nncRucPot Pres. datrepack| | ||| 1

10973| tbase. bin| ||| 10915] 1

10974| t base. br| ||| 10919| 4

10974| t base. bl | || | 10918| 3

10974| tbase. tr| ||| 10917| 2

10974| tbase. tl||]] 10916| 1

Constant & Unit Conversion file
| MPORTANT NOTE: THI'S FILE WLL BE SUPPLI ED AFTER TK4 DELI VERY!

The following are for the PGS _CCT tool only.
The IDs are #defined in the PGS _GCT.h file

|1
11

10200| nad27sp| ~/ runti nme|
10201| nad83sp| ~/ runti ne|

The following are for the PGS_AA DCWtool only.
The IDs are #defined in the PGS_AA DCWh file

10990| eurnasi a/| |||
10991| noarer/||]]]1
10992| soamafr/|| |||
10993| sasaus/ || ||| 1

End Tool kit product input files

PRODUCT OUTPUT FI LES
[next line is for default location]
~/runtine

T HOHH

301 test11. hdf||]]]1
#

? SUPPORT | NPUT FI LES

[next line is for default location]
!~/ supporti nput

#

S
Tool kit support input files
2
#

B m e m e mm e
This IDis #defined in PGS_AA Tools.h . This file contains

the IDs for all support and format files shown.

B m e mm e
10900| i ndexFil e[~/runtine||||1

#

B mmm e mmmmemeaaan

These are support files for the data set files - to be created
by user (not necessarily a one-to-one relationship)
The IDs nmust correspond to the logical IDs in the index file

10901| mowel3aSupport |~/ runti ne|
10902| owel3aSupport |~/ runtine| |
10903| owel4Support | ~/runtime| ||
10904| et opO5Support |~/ runtime| |
10905| f noc1Support| ~/runtine| ||
10906]| f noc2Support | ~/runtime| ||
10907| zobl er 1Support| ~/ runti ne|
10908| zobl er 2Support| ~/ runti ne|
10909| nncRucSupport |~/ runti me| |
10915| t baseSupport | ~/runtine| ||
10916| t baselSupport|~/runtinme| |

|

|

|

|

|

|

|11

|

|

I
10917| t base2Support |~/ runtine| ||

|

|

|

|

|

|

|

|

|

|

|

1

10918| t base3Support |~/ runti me|

10919| t base4Support| ~/runti me|

10740| usati | elSupport|~/runtime
10741| usati | e2Support|~/runti me
10742| usati | e3Support|~/runti me
10743| usati | e4Support|~/runtime
10744| usati | e5Support|~/runti me
10745| usati | e6Support|~/runtime
10746| usati | e7Support|~/runti me
10747| usati | e8Support|~/runti me
10748| usati | e9Support|~/runtime
10749| usati |l elOSupport|~/runtime
10750| usatil ellSupport|~/runtime
10751| usati | el2Support| ~/runti me

The following are format files for each data set file
(not necessarily a one-to-one rel ationship)
The IDs nust correspond to the logical IDs in the index file

10920| mowel3a. bf mj{ ~/runtine| ||| 1

10921| owel3a. bf n{ ~/ runti ne|
10922| owel4d. bf | ~/ runti nme|
10923 owel4dr. bf n{ ~/ runti ne
10924| et op05. bf n{ ~/ runti ne|
10925| f nocAzm bf | ~/ runti ne
10926| f nocCcm bf | ~/ runti ne
10927| f nocPt . bf n{ ~/ runti ne|
10928| f nocRdg. bf | ~/ runti ne
10929| f nocSt . bf nf ~/ runti ne|
10930| f nocUr b. bf n] ~/ runti
10931| f nocWat . bf nj ~/runti
10932| f nocMax. bf nf ~/ runti
10933| fnocM n. bf n ~/ runti
10934| f nocMod. bf n{ ~/ runti
10935| srzArea. bf m ~/ runti
10936]| srzCode. bf n| ~/ runti
10937| srzPhas. bf nf ~/ runti
10938| srzSl op. bf | ~/ runti
10939| srzSoi |l . bf n{ ~/runti
10940| srzText . bf n] ~/ runti
10941| nncRucSi gPot Pres. bf ni
10942| t base. bf m{ ~/ runti ne| |
10943| t basel. bf m ~/ runti me|
10944| t base2. bf | ~/ runti ne|
10945| t base3. bf nf ~/ runti ne|
10946| t base4. bf nf ~/ runti ne|
10700| usatil el. bfnf ~/runti me
10701| usatil e2. bfm ~/runtine
10702| usatil e3. bfnm ~/runti me
10703| usatil e4. bfm ~/runti ne
10704| usatil e5. bf m ~/runtine

nme

me

ne

me

33333333333

time||]]1

10705| usatil e6. bf m{ ~/runti
10706| usatil e7. bfm ~/runti
10707| usatil e8. bf m ~/runti
10708| usatil e9. bf | ~/runti
10709| usati |l e10. bf m{ ~/ runti me 1
10710| usatil ell. bf m ~/runti me 1
10711| usatil el2. bf m ~/runti me 1
#

directory where spacecraft epheneris files are |ocated
NOTE: This line is used to specify a directory only!

The "file" field should not be altered.

H m e m e m e e e e e e e e e e e e e e e e e e m
10501| .| ~/1i b/ database/ EPH ||| 1

#

H m o m e e e e e e e e e e e e e e e e e e m e e e m
JPL planetary epheneris file (binary form

H m o m o m e e e e e e e e e e e e m e e e e e e m e

10601| de200. eos| ~/ | i b/ dat abase/ CBP| | | | 1

End Tool kit support input files

SUPPORT OUTPUT FI LES
[next line is for default location]
~/ suppor t out put

TOH O H R HHH

These files support the SMF log functionality. Each run wll
cause status information to be witten to 1 or nore of the Log
files. To sinulate DAAC operations, renpve the 3 Logfiles

bet ween test runs.

HHHFHHFEFEFFH R

Remenber: all executables within a PGE will contribute status
data to the same batch of log files.

10100| LogStatus| ~/runtine| ||| 1

10101| LogReport|~/runtine||||1

10102| LogUser | ~/runtine| ||| 1

10103| TnpStatus| ~/runtine||||1

10104| TrpReport| ~/runtine| ||| 1

10105| TrpUser | ~/runtine| ||| 1

10110| Mai I File| ~/runtime| ||| 1

#

-

ASCI| file which stores pointers to runtime SMF files in lieu of
| oading themto shared nenory.

H

601| request ed_si ze_x| 409
602| request ed_si ze_y| 128
603|wait _tinme|3

#

These paraneters are required to support the PGS_SMF_Send*
tools. If the first paraneter (TransmitFlag) is disabled, then
none of the other paraneters need to be set. By default, this
functionality has been disabled. To enable, set TransmtFlag
to 1 and supply the other 3 paranmeters with local information.

HHHHHHH

10109| Transmi t Fl ag; 1=transmt, 0=di sable|1
10106| Renot eHost | fire@os. hitc. com

10107| Renot ePat h| / fire2/toma/i nbox

10108| Erei | Addr esses| t ona@os. hitc. com

Default location for processing host |P address.
This is overridden by the environnent variable PGS_HOST_PATH.

10099| Local | P Address of 'ether']|155.157.31. 87

#

#

? | NTERVEDI ATE | NPUT

[next line is for default location]
' ~/runtinme

#

#

? | NTERMEDI ATE OUTPUT

[next line is for default |ocation]
' ~/runtinme

#

#

? TEMPCRARY | O

[next line is for default |ocation]
' ~/runtime

#

- S SOy e
Pat hfi nder AVHRR/ Land tenporary file
- g
901| test10.bin||]|]]

#

#

? END

	SDP Toolkit Primer for the ECS Project

