Earthdata Cloud Analytics Project

Chris Lynnes and Rahul Ramachandran
Goals

1. Big compute next to big data: the big win in cloud data archives*

2. User adoption of cloud for analytics

3. Maximum analytics capability at minimum cost
 a. Use internal capabilities more effectively and efficiently
 b. Leverage external analytics capabilities

*Vis2020: “Data Analysis at Scale”
Main Constraints

1. ERT Recommendation #2*:
 a. Right Tools + Less Duplication
 b. Reuse + Open Source
 c. Common web services

2. Do NOT affect the main Earthdata Cloud goals
 a. NGAP rearchitecture
 b. Cumulus development
 c. Archive migrations

*Vis2020: Combining Tools: Tools and services within the community are easy to combine.
Key Features

1. Satisfy a diverse user community
2. Support analysis in the cloud without egressing data*
 a. Legacy algorithms
 b. Cloud-native algorithms
3. Facilitate multi-dataset comparison and fusion**
4. Support different modes of data interaction (Batch, Interactive, Streaming)
5. Support different modes of data storage (file systems, indexed storage..)
6. Support cost constraints and cost-sharing

*Vis2020: Mobile Data and Processing: Data and processing move transparently as necessary to achieve optimal performance. (kinda)
**Vis2020: Combining Data: NASA data can be combined with data from other agencies, nations and other entities
Earthdata Cloud Analytics Guiding Principles

1. **Provide building blocks** for innovation and infuse rapidly evolving technologies
2. Eschew monolithic systems
3. Enable openness: code and service exposure
4. Encourage/Enforce interoperability and reuse
5. Eschew *unnecessary* duplication in the form of undifferentiated heavy lifting
Architectural Concept

Earth Science Data Analytics the Cloud-Native Way: Everything is a Service

This approach produces key important benefits for the user community and EOSDIS
Abstract Analytics Workflow

data → Extract → Transform → Load → Analyze → Visualize
Earthdata Cloud Analytics Reference Architecture

1. **Preprocessing as-a-service**
2. **ARD\(^1\) as-a-service**
3. **Analysis as-a-service**
4. **Visualization as-a-service**

\(^1\) Analysis Ready Data
Supports Interactive, Batch and Streaming Modes
Interactive Mode: Analytics-Optimized Storage

- Cumulus as-a-service
- Preprocessing as-a-service
- ARD¹ as-a-service
- Analysis as-a-service
- Visualization as-a-service

¹ Analysis Ready Data
Batch Mode

Cumulus

Preprocessing
as-a-service

Analysis
as-a-service

Visualization
as-a-service

ARD\(^1\)
as-a-service

\(^1\) Analysis Ready Data
Streaming Mode

Cumulus

Preprocessing as-a-service

Event Analytics as-a-service

Visualization as-a-service
Open Pipeline Provides Outputs at Different Stages Appropriate for a Diverse User Base
Open Pipeline Provides Outputs at Different Stages Appropriate for a Diverse User Base

Preprocessing as-a-service

ARD\(^1\) as-a-service

Analysis as-a-service

Visualization as-a-service

End-User-Specific Cloud-Native Analysis

End-User Cloud-Native Analysis

Cumulus

Analysis Ready Data
Open Pipeline Provides Outputs at Different Stages Appropriate for a Diverse User Base
Open Pipeline Provides Outputs at Different Stages Appropriate for a Diverse User Base

Preprocessing as-a-service

ARD1 as-a-service

Analysis as-a-service

Visualization as-a-service

End-User-Specific Analysis

End-User Cloud-Native Analysis

End-User Interpretation

Data Exploration
Open Pipeline Enables Integration with Other Data, Scripts, and Workflows

Preprocessing as-a-service
End-User-Specific Analysis

ARD1 as-a-service
End-User Cloud-Native Analysis

Analysis as-a-service
End-User Interpretation

Visualization as-a-service
Data Exploration
Open Pipeline Enables Integration with Exploitation Platforms
Where EOSDIS Stops and the User Begins

Strawman: Open for Discussion!

<table>
<thead>
<tr>
<th>EOSDIS Responsibility</th>
<th>User Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>General-purpose preprocessing</td>
<td>User-specific preprocessing</td>
</tr>
<tr>
<td>Common summary statistics algorithms</td>
<td>User-defined analysis algorithms</td>
</tr>
<tr>
<td>Budget-limited processing for analysis</td>
<td>User-pays processing beyond budget limits</td>
</tr>
<tr>
<td>Provide analysis capability to user (e.g., AMI)</td>
<td>Run analysis</td>
</tr>
<tr>
<td>Interactive visualization for exploration</td>
<td>Publication-quality data graphics</td>
</tr>
<tr>
<td>EOSDIS standard projections</td>
<td>Other projections</td>
</tr>
</tbody>
</table>

Earthdata Cloud Analytics
HOW: Implementation
Earthdata Cloud Analytics Project

- Architecture and Design
- Current Capability Implementation in ECA Architecture
- Technology Infusion
Earthdata Cloud Analytics Project

- Technology Infusion
- Current Capability Implementation in ECA Architecture
- Architecture and Design
- Design Patterns
- Architecture
- Standards

Business Model

Earthdata Cloud Analytics
Seeking to Form an Architecture Team

- **Tasks**
 - Refine Reference Architecture
 - Develop Design Patterns
 - Work with applicable standards groups (ESO, ESDSWG, WGISS)
 - Work on Business Model
 - Design User Experience

- **Membership**
 - ESDIS architects
 - DAAC architects
 - EED2 architects
 - EOSDIS Standards Office
 - Affiliated project architects: e.g., H. Hua (Mission Analysis Platform*)
 - Experts in the field as available

- **Vis2020: Sharing:** Scientists are able to share all scientific resources (data, tools, results, workflows, contextual knowledge)
Earthdata Cloud Analytics Project

- Technology Infusion
 - Current Capability Implementation in ECA Architecture
 - Giovanni
 - Design Patterns
- Architecture and Design
Earthdata Cloud Analytics Project

- New Technology Infusion
- Cloud Analytics Workshop
- Current Capability Implementation in ECA Architecture
- Architecture and Design
- Community Adoption
- Interoperability Demonstrations
Technology Infusion Suggestion:

● Informal ESDIS RFP to integrate analytics capabilities into Earthdata Cloud Analytics
● Timeline
 ○ RFP: July 2018
 ○ Selection: Sept. 2018
To Do

➢ Get Go-Ahead from Kevin (Done)
➢ Brief DAAC Managers (Feb. 8)
➢ Develop Project Plan
➢ Recruit Architecture Team
1. Architecture and Design

1.1 Earthdata Cloud Analytics Architecture
 a. Service-based architecture
 b. Design patterns
 c. User Experience

1.2 Earthdata Cloud Analytics Standards
 a. Service APIs
 b. Data Formats and Conventions

1.3 Business Model
 a. Nonelastic \Rightarrow Partially Elastic \Rightarrow Fully Elastic
 b. Cost prediction
 c. Cost allocation (ESDIS vs. User)
 d. Cost control
 e. Governance model
Prototype Implementation

- **Earthdata Cloud Analytics ("powered by Giovanni")**
 - High profile win with extensive user base
 - Clear use cases for cloud (e.g., ARSET)
 - Already demonstrated in the cloud
 - NGAP porting underway

- **Success Target:**
 - Cloud-based instance provisioned for ARSET training
 - Three (3) disciplines
 - Most commonly used workflows
 - Time Averaged Map
 - Area-Averaged Time Series

- **Jan - Dec. 2018**
Dedicated Funding vs. Steering Existing Activities

- **Architecture & Design**
 - Funding: EED2 architects
 - Steering: ESO, ESDSWG

- **Current Implementation**:
 - Funding: Giovanni
 - Steering:

- **Technology Infusion**
 - Steering: Active Scouting, Leveraging Partnerships
 - Funding: Infusion and interoperability demonstrations, Selected infusions
Communications Plan

<table>
<thead>
<tr>
<th>Stakeholders</th>
<th>Communications</th>
</tr>
</thead>
<tbody>
<tr>
<td>HQ</td>
<td>Report up through Earthdata Cloud Project Briefings* at HQ</td>
</tr>
<tr>
<td>DAACs</td>
<td>Briefing at DAAC Managers Meeting and Telecons Inreach Webinars System Engineers Meeting Analytics Working Group? Mail Lists?</td>
</tr>
<tr>
<td>User and Partner Communities</td>
<td>Webinars and Seminars ARSET Trainings Recipes DAACs Articles (Eos, Big Earth Data Analytics book) Conferences (BiDS, IGARSS, ESIP, AGU, WGISS…)</td>
</tr>
</tbody>
</table>
Stakeholders and Benefits

<table>
<thead>
<tr>
<th>Stakeholders</th>
<th>Key Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert science users</td>
<td>Customized (transformed) data for easy analysis with adjacent computing power</td>
</tr>
<tr>
<td>Cloud-native users</td>
<td>Data reorganized and stored in cloud-analytics-friendly fashion</td>
</tr>
<tr>
<td>Interdisciplinary users</td>
<td>Data statistics computations with full provenance</td>
</tr>
<tr>
<td>Applications</td>
<td>Open API for developing data-to-decision-support chains Ready access to machine learning applied to NASA data</td>
</tr>
<tr>
<td>EOSDIS archive managers</td>
<td>End-user migration to the cloud (=egress-free access) Building blocks and process for constructing rich analysis support for community</td>
</tr>
<tr>
<td>NASA HQ</td>
<td>Full exploitation of complete datasets AIST / ACCESS infusion</td>
</tr>
</tbody>
</table>
2. Port Current Implementation

2.1 Giovanni: Architecture Pathfinder and High Profile Win
 a. Port to NGAP
 b. Refactor for full standards-based service exposure
 c. Business model implementation
3. Technology Infusion

3.1 Cloud Analytics Workshop
 a. Algorithms
 b. Systems
 c. Architecture refinement

3.2 New Technology Infusion
 a. Active Scouting: ACCESS, AIST, ECF, SBIR, NSF, AGU...
 b. Partnerships: MEP, GeoGLAM, WGISS, COVERAGEs...

3.3 Infusion and interoperability demonstrations
 a. Modeled on OGC Interoperability Experiments
 b. Call for Proposals to EOSDIS elements (and ACCESS, AIST?)

3.4 Community Adoption
 a. Communications: Papers, Webinars, How-Tos, Jupyter notebooks...
 b. Partnerships: AGU, OGC, WGISS ...

Earthdata Cloud Analytics