
\

Computer
. -Systems

Technology
u.s. DEPARTMENT OF
COMMERCE
Technology Administration
National Institute of
Standards and
Technology

D

0

0

0

D

0

0

0

0

0

0 0

0 0

0 D

0 0

[J . - 0

0 0

0 0

0 0

0 0

0 0

II NiST Special Publication 500-234

ll<$.~ [ce rrce nn ~ ce IIrrnif CIJ) Ilmm21 ~n ([}) TIn [CO) It

~Ihlce §([Dll~W21Jr~ Vcerrnrn~~~n@ll1l

2lnncdl V 2lllil@21frne[plID __ IFIlCO)'";;{'f'(C-=.!:ce§=§ __
I PB96fs8164 '\

Dolores R. Wall~ce \ 111111111111111l1li111111111111 j
Laura M. Ippolito -
Barbara B. Cuthill

[J 0 0 0 0 0 0 0

0 [] 0 0 0 0 0 0

0 G3 0 0 0 0 0 0

0 0 0 0 D 0 0 0
i

D 0 D 0 0 0 0 0

0 0 D 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
REPRODUCED BY: ~

U.S. Department of Commerce
NalionaJ Technical Information Service

Springfield, Virginia 22'161

~e National Institute of Standards and Technology was established in 1988 by Congress to "assist industry
11 ;'n the development of technology ... needed to improve product quality, to modernize manufacturing processes,
to ensure product reliability ... and to facilitate rapid commercialization ... of products based on new scientific
discoveries."

NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's
competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the
agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and
provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce,
industry, and education with the standards adopted or recognized by the Federal Government.

As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic arid applied
research in the physical sciences and engineering, and develops measurement techniques, test methods, standards, and
related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's
research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303. Major technical operating units
and their principal activities are listed below. For more information contact the Public Inquiries Desk, 301-975-3058.

Office of ~ihJ.e [))nrec~or
• Advanced Technology Program
• Quality Programs
• International and Academic Affairs

'JI'ecihJ.II]ollogy §ennces
• Manufacturing Extension Partnership
• Standards Services
• Technology Commercialization
• Measurement Services
• Technology Evaluation and Assessment
• Information Services

Ma~ernalls §CJieJl]ce amll lEII]gnJl]eernJl]g
Labora~ory
• Intelligent Processing of Materials
• Ceramics
• Materials Reliabilityl
• Polymers
• Metallurgy
• Reactor Radiation

CihJ.emncall §CJieJl]ce aII]d1 'JI'ecihJ.Jl]ollogy
lLaboratory
• Biotechnology
• Chemical Kinetics and Thermodynamics
• Analytical Chemical Research
• Process Measurements
• Surface and Microanalysis Science
• Thermophysics2

PihJ.ysncs Laboratory
• Electron and Optical Physics
• Atomic Physics
• Molecular Physics
• Radiometric Physics
• Quantum Metrology
• Ionizing Radiation
• Time and Frequency I
• Quantum Physics l

I At Boulder. CO 80303.
'Some elements at Boulder. CO 80303.

Mamnfadu]]['nII]g lEII]gnII]eernII]g Laboratory
• Precision Engineering
• Automated Production Technology
• Intelligent Systems
• Manufacturing Systems Integration
• Fabrication Technology

ElledIroJl]ncs aII]d1 lElledrncall lEJl]gnIrlleernJl]g
Laboratory
• Microelectronics
• Law Enforcement Standards
• Electricity
• Semiconductor Electronics
• Electromagnetic Fields I
• Electromagnetic Technology I
• Optoelectronics I

lBUlnlldlnII]g aII]d1 IFnre ResearcihJ. Laboratory
• Structures
• Building Materials
• Building Environment
• Fire Safety
• Fire Science

ComjpUl~er §ys~ems Labora~ory
• Office of Enterprise Integration
• Information Systems Engineering
• Systems and Software Technology
• Computer Security
• Systems and Network Architecture
• Advanced Systems

ComjpUltnJl]g aJl]d1 AjppHedl Matltnema~ncs
Laboratory
• Applied and Computational Mathematics2

• Statistical Engineering2
• Scientific Computing Environments2

• Computer Services
.• Computer Systems and Communications2

• Information Systems

NIST Special Publication 500-234

Reference Information for
the Software Verification
and Validation Process

Dolores R. Wallace
Laura M. Ippolito
Barbara B. Cuthill

Information Systems Architecture Division
Computer Systems Laboratory
National Institute of Standards and Technology
·Gaithersburg, MD 20899-0001

April 1996

1- ~~-- __
I PROTECTED UNDER INTERNATIONAL COPYRIGHTl
I All RIGHTS RESERVED
I NATIONAL TECHNICAL INFORMATION SERVICE II L U.S. DEPARTMENT OF COMMERCE I

--- -1

u.s. Department of Commerce
Michael Kantor, Secretary

Thchnology Administration
Mary L. Good, Under Secretary for Technology

National Institute of Standards and Technology
Arati Prabhakar, Director

Rep~rts on Computer Systems Technology

The National Institute of Standards and Technology (NIST) has a unique responsibility for computer
systems technology within the Federal government. NISI's Computer Systems Laboratory (CSL) devel
ops standards and guidelines, provides technical assistance, and conducts research for computers and
related telecommunications systems to achieve more effective utilization of Federal information technol
ogy resources. CSL's responsibilities include development of technical, management, phYSical, and ad
ministrative standards and guidelines for the cost-effective security and privacy .of sensitive unclassified
information· processed in Federal computers. CSL assists agencies in developing security plans and in
improving computer security awareness training. This Special Publication 500 series reports CSL re
search and guidelines to Federal agencies as well as to organizations in industry, government, and
academia.

National Institute of Standards and Technology Special Publication 500-234
Natl. Inst. Stand. Technol. Spec. Publ. 500-234, 90 pages (April 1996)

CODEN: NSPUE2

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1996

For sale by the Superintendent of Documents, U.S: Government Printing Office, Washington, DC 20402

ABSTRACT

Computing systems may be employed in the health care environment in efforts to increase reliability
of care and reduce costs. Software verification'and validation (V&V) is an aid in determining that
the software requirements are implemented correctly and completely and are traceable to system
requirements. It helps to ensure that those system functions controlled by software are secure,
reliable, and maintainable. Software V &V is conducted throughout the planning, development and
maintenance of software systems, including knowledge-based systems, and may assist in assuring
appropriate reuse of software.

. KEYWORDS

Health care; independent verification and validation; knowledge-based systems; software reuse;
software development; software diagnostic tools; software verification and validation.

ACKNOWLEDGMENTS

This report was funded by the Advanced Technology Program (ATP) of the National Institute of
Standards and Technology (NIST) under Solicitation 94-04, Information Infrastructure for Health
Care.

iii

· I

EXECUTIVE SUMMARY

Like many other industries in the United States, the health care industry is turning to computing
systems to reduce administrative overhead, control escalating costs, and improve accuracy of stored
information. New technology is affecting the form and usage of patient information, diagnostic tools,
and the tools which provide treatment. In particular, the application of information technology is a
promisi?g enabler for transferring gains in medical science research to patient benefit, for ensuring
appropriate availability of patient information, and for managing the billing processes.

Computing systems may be employed in the health care environment in efforts to increasereliability
of care and reduce costs. Software verification and validation (V &V) is an aid in determining that
the software requirements are implemented correctly and completely and are traceable to system
requirements. (Software V &V does not verify the correctness of the system requirements, only that
the software requirements can be traced to the system requirements.) It helps to ensure that those
system functions controlled by software are secure, reliable, and maintainable. It uses a structun~d
approach to analyze and test the software: It evaluates software against its requirements for quality
attributes such as performance. Software V &V is conducted throughout the planning, development,
and maintenance of software systems.

The major objective of the software V &V process is to determine that the software performs its
intended functions correctly, ensure that it performs no unintended functions, and provide information
about its quality and reliability. Software V &V evaluates how well the software is meeting its
technical requirements and its safety, security and reliability objectives relative to the system. It also
helps to ensure that software requirements are not in conflict with any standards or requirements
applicable to other system components. Software V&V tasks analyze, review, demonstrate or test
all software development outputs.

The guidelines in this report address V &V issues related to the recognition that different health care
systems may:

•
•
•
•

execute in real time (e.g., implantable medical devices and treatment devices);
rely heavily on existing software;
contain many units contributing to overall system complexity;
incorporate knowledge-based systems (KBS) (e.g., diagnostic systems).

The software V &V process is tightly integrated with the software deVelopment process. For each
activity in software development there is a corresponding software V &V activity to verify or validate
the products of those activities. This report explains these relationships, the software V &V tasks
supporting each activity, and the types of techniques that may be used to accomplish specific software
V&V tasks.

Software V &V has long been employed on new development projects. Today, more and more
systems are built using commercial off-the-shelf (COTS) software products, software components
from sources external to the developer, and software from a previous version of a similar product
built by the same organization. Some of the issues concerning software V &V for systems reusing
any of these software types are addressed in this document.

·v
Preceding page blank

The health care industry has been interested in, and made use of, artificial intelligence (AI) techniques
by developing KBSs to understand the complex medical and patient data used for diagnosis. This
interest has grown as the scale of the problem of managing data and knowledge has grown in the
health care industry. While there are techniques available for V &V of the KBS which employ AI
techniques, the V &V and AI communities still need to do more research especially in the areas of
making knowledge maintenance easier and more reliable. These guidelines provide an overview of
the issues in using V&V and KBS techniques.

VI

AI
ATP
CASE
CBR
COTS
FSM
IA
N&V
KBS
KADS
LOC
NIST
SFMECA
SPC
SQA
SVVP
SVVR
V&V

ACRONYMS

Artificial Intelligence
Advanced Technology Program
Computer-Aided Software Engineering
Case-Based Reasoning
Commercial Off-The-Sh~lf
Finite State Machines
Intelligent Agents
Independent Verification and Validation
Knowledge-Based System
KBS Analysis and Design Support
Lines Of Code
National Institute of Standards and Technology
Software Failure Mode, Effects, and Criticality Analysis
Statistical ~rocess Control
Software Quality Assurance
Software Verification and Validation Plan
Software Verification and Validation Report
Verification and Validation

vii

TABLE OF CONTENTS

ABSTRACT .. ill

ACKNOWLEDGMENTS ill

EXECUTIVE SUMMARY . ; : v

ACRONYMS .. ' vii

1 INTRODUCTION '" '' 1

2 SOFTWARE VERIFICATION AND VALIDATION (V&V) 3
2.1 Independent V & V : 5
2.2 Software V & V Management " 6
2.3 Software V & V Activities .. 9

2.3.1 Software Requirements V & V 10
2.3.2 Software Design V&V 13
2.3.3 Code Verification ... 15
2.3.4 Unit Test ... ' 16
2.3.5 Software Integration Test 18
2.3.6 Software System Test 19
2.3.7 Software Installation Test ' .. ; 21
2.3.8 Software Operation and Maintenance V&V : 21

3 SOFTWARE V &V TECHNIQUES 23
3.1 Strategies for Choosing Techniques : 23
3.2 Desc:iptions of Techniques•........ 25

4 REUSE .. ' ;' ' 39
4.1 Software Reuse Concerns ... 39
4.2 Assessing Software for Reuse 40

5 KNOWLEDGE-BASED SYSTEMS (KBS) 45
5.1 KBS and Agents .. 45
5.2 Differences and Similarities between KBSs and Other Systems 46
5.3 KBS Development .. 47

5.3.1 KBS Analysis and Design Support 47
5.3.2 KBS Development Process' 48

5.4 Issues for Real Time KBS .. '. 49
5.5 Reuse and KBS .. 50

6 REFERENCES " .. 51

ix Preceding page blank

APPENDIX A SOFIW ARE V &VMEASUREMENT , 59
A.l Metrics .. ; ... , 59

Al.l General Metrics,.......;............ 60
A1.2 Software Requirements Metrics ,.; 61
A1.3 Software Design Metrics "~•••. ~ 62
A.1.4 Code Metrics -........ ; , 64
A.1.5 Test Metrics , ~ 65
Al.6 Software Installation Metrics•............ ;; 67
Al.7 Software Operation and Maintenance Metrics , ... ' .. 67

A2 Statistical Process Control Techniques , .. 0 ... 0 .. o .. 0 . 0 0 ... ; ; .. 0 ... 68
A.2.1 Control Charts o. 0 0 ' 0 .. 0 0 0 ' .. 0 0 .. 0 . '0 .. 0 0 0 . 0 . 69
Ao2.2 ,Run Chart ... '. 0 0 ' .. ~ ... 0 .. 0 00 0 0 .. ' .. ' 0' 0 0 0 . 0 0 0 '0 0 . 0 o. 0'; .. ' . 0 . 0 .. 71

'Ao2.3 Bar Graph: 0 . 0 0 .. : 0 0 .:0 •... 0 ... 0 0 0 ,. 0 ;'. 0" .. 0 0 72
A.2.4 Pareto Diagram 0 0 ... 0 . 0 0 0 0 : . 0 . 0 .. '. 0 . 0 0 • , . '0 .'~ ; , .. 0 .. 0 0 72
,A.205 Scatter Diagram' 0 0 .. o 0 0 0 .. 0 .. ; .' .. 0 ; 0 . 73
A2.6. Method <;>fLeastSquares (Regression Technique) . 0 .• 0 . ; 0 . ,.; 0 0 . 0 ; .75

A3 Software Reliability Estimation Models ... 0 0 . o ... 0 0 . 0 0 .. 0 .. , .. 0 0 ... 0 . 76

Tables

Table 2-1. Major Software V & V Activities 0 0 0 0 0 0 . 0 0 ,0 .. 0 . 0 0 . , 0 .. , , 0 0 0 0 0 4
Table 3-1. 'Software V&V Techniques;. 0 . 0 0 0.0'0.0: 0 .. 0 .. 0',' . ; 0 .. 0 0 35
Table 5 .. 1. KADS Activities, Tasks, and Products ... 0 . ' .. ; 0 .. 0 .. o. 0 0 . 0 0 ; . 0 ... 0 48
Table 5-2. Development Process Mapping, 0 0 00'; ... 0 . 0 o : 0 .. 0 , . 0 0 0 49
Table A-I. Types of Control Charts .. 0 0 0 0 .. : .. 0 ... 0 . " ... 0 0 70

Figures;

Figure A-J np Control Chart. 0 .. 0 0 0 .,.' 0 0 .. 0 . 0 '0 . ; 0 •. 0 .. 0 0 : . 0 .. 71
Figure A-2 Bar Chart ... 0 ... 0 ... 0 0 .. 0 ... , 0 . , 0 .. 0 0 0 0 . 0 . 0 0 0 . 0 0 0 • , 0 ... 0 .. 0 . 0 73
Figure A-3 Pareto Chart. .. 0 .. 0 . 0 0 0 0 0 ... , . 0 , . , 0 0 . 0 0 . 0 0 . 0 0 0 0 0 .. 0 0 . 0", 0" 0 ',0 74
Figure A-4 Scatter Diagra,m 0 0 . 0 .. 0 . 0 '0 . 0 0 . 0 0 .. 0 0:; . : 0 . '00 .0 0 . 00 .. 0 ., ; ... 0 .' 0 75

x

1 'INTRODUCTION

Like many other industries inthe United States, the health care industry is turning to computing
systems to control escalating costs and improve the quality of service. New technology is affecting
the form and .usage of patient information, diagnostic tools, and the tools which provide treatment.
In particular, the application of information technology is a promising enabler for transferring gains
in medical science research to patient benefit, for ensuring appropriate availability of patient
information, and for managing the billing processes.

In response to the increasing dependence of the health care industry on information technology, the
Advanced Technology Program (ATP) at the National Institute of Standards and Technology (NIST)
issued' Solicitation 94-04, Information Infrastructurefor Health Care. The recognition by the ATP
that the computer-based systems used in health care must be of high integrityl resulted in one element
of that solicitation being technology for verification, and validation (V & V)., Thisreport is, the result
of an effort funded by the ATP to produce guidance for the software V&V of computer-based health
care systems. Software V &V helps to ensure and assess the quality of software~based systems.

Computing systems may be employed in the health care environment in efforts to increase reliability
of care and reduce costs. To achieve these benefits, those functions controlled by software in health
care systems must be secure, reliable, and maintainable. Software V&V will help to provide all these
assurances. Software verification and validation (V &V) is an aid in determining that the software
requirements are implemented correctly and completely and are traceable to system requiremerits:
(Software V & V does not verify the correctness of the system requirements, only that the software
requirements can be traced to the system requirements.) Ituses a structured approach to analyze and
test the software. It measures software against its requirements for quality attributes such as
performance, safett, and computer security. Software V&V includes activities3 to-determine that
the software system performs its intended functions correctly, to ensure that it performs no
unintended functions, and to provide information about its quality and reliability.

The guidelines in this report address V &V issues related to the recognition that different health care
systems may:

• execute in real time (e.g., implantable medical devices and treatment devices);'
• rely heavily on existing software;
• contain many units contributing to overall system complexity;
• incorporate knowledge-based systems (KBS) (e.g., diagnostic systems).

lHigh integrity systems are those which can and must be trusted to work dependably [NISTl90].

~oughout this document, the w'ord safety is used in the context of this definition from [LEVESON95]: 'Software
system safety implies that the software will execute within a system context without contributing to hazards,

3This doc'ument adopts the terminology used in [IS012207]; i.e., a "process" is made up of "activities" which
contain "tasks," For example, the software development process includes a software requirements activity and the software
V & V process includes, among others, the software requirements V & V activity which contains, among others, a task called
software requirements evaluation. ([NIST223] only used the terms ''process'' and "activity," e.g., software requirements
V &V process contains the activity called software requirements evaluation.)

1

Software V &V has long been employed on new development projects. Today, more and more
systems are built using commercial off-the-shelf (COTS) software products, software components
from sources external to the developer, arid software from a previous version of a similar product
built by the same organization. Some of the issues concerning software V &V for systems reusing
any of these software types are addressed in this document. This particular aspect of software V & V
for reused software requires additional research from the reuse and V &V communities.

The health care industry has been interested in and made use of artificial intelligence (AI) techniques
by developing KBSs to understand the complex medical and patient data used for diagnosis. This

. interest has grown as the scale of the problem of managing data and knowledge has grown in the
health care industry. While there are techniques available for V &V of the KBS which employ AI
techniques, the V &V and AI communities still need to do more research especially in the areas of
making knowledge maintenance easier and more reliable. These guidelines provide an overview of
the issues in using KBS techniques on systems requiring high reliability and on some of the techniques
for V &V of KBS especially KBS which employ expert systems.

The guidance in this report is generally applicable to most software systems and is compatible with
the following existing NIST guidance documents:

• "A Study on Hazard Analysis in High Integrity Software Standards and Guidelines",
[NIST5589]

• "A Framework for the Development and Assurance. of High Integrity Software" [NIST223]

• "Quality Characteristics and Metrics for Reusable Software" [NIST5459]

• '''Software Error Analysis" [NIST209]

• "Software Quality Assurance: Documentation and Reviews" [NIST4909]

• "Software Verification and Validation: Its Role in Computer Assurance and Its Relationship
with Software Project Management Standards'~ [NIST165]

• "Guideline for Software Verification and Validation Plans" [FIPS132]

The overview of software V & V in section 2 of this 'report describes considerations for determining
who performs software V&V and provides details on the management of software V&V. Section
2 also discusses the scope, objectives, and tasks of software V&V. Section 3 explains the categories
of techniques supporting V & V. It also presents short descriptions .of the more common techniques,
the problems they help to uncover, and the other tasks they may support. Sections 4 and 5 address
issues regarding reused software and KBS. In both cases, more research is needed to provide a
comprehensive approach for software V &V. Appendix A addresses software metrics, statistical
processes, and reliability estimation models that may be applied to the collective findings of software
V&v. ~'

2

2 SOFTWARE VERIFICATION AND VALIDATION (V&V)

Software verification and validation (V &V) is an aid in determining that the software requirements
are implemented correctly and completely and are traceable to system requirements. (Software V &V
does not verify the correctness of the system requirements,only that the software requirements can
be traced to the system requirements.) The major objective of the software V &V process is to
comprehensively analyze and test the software during development to determine that the software
performs its intended functions correctly, ensure that it performs no unintended functions, and
provide information about its quality and reliability [NISTI65]. Software V &V evaluates how well
the software is meeting its technical requirements and its safety, security, and reliability objectives
relative to the system. It also ensures that software requirements are not in conflict with any
standards or requirements applicable to other system components. Software V &V tasks analyze,
review, demonstrate or test all software development outputs.

Software verification examines the products of each development activity (or increment of the
activity) to determine if the software development outputs meet the requirements established at the
beginning of the activity. The scope of each software development activity is defined by software
program management. A software design may consist of many small increments for each iteration
of the total system. Hence, V &V tasks can be performed on small outputs. Validation that the
software is a correct implementation ofthe system requirements for which the software is responsible,
is conducted concurrently with, and at the end of, all software development activities.

The software V&V process produces a software verification and validation plan (SVVP), individual
plans and reports for tasks, summary reports, anomaly reports, and a final software verification and
validation report (SVVR). Software V & V planning is conducted against system requirements at the
highest level of planning, and then on the software requirements, which should be traceable to the
system requirements. Many software V &V tasks, such as planning for software system test, are
actually performed in early development activities. 'The software system test plan is developed
concurrently with the software requirements activity. The plan is updated with additions or changes
,in details as the project progresses. While different management and technical staff may be responsible
for different types of test, staff who perform verification of the software requirements may be staff
who prepare preliminary plans for software system tests. The development of the test plans and
designs may lead to discovery of software requirements errors because of the analysis needed to plan
tests.

One issue that often arises in planning a project and its software V &V effort is how to ensure the
objectivity of the staff performing software V &V tasks. Independent V &V (IV &V) for software
grew out ofthis concern. Software IV&V is the performance of software V &V tasks by a team that
is separate from the software development group.· IV &V is described in section 2.1.

This guideline is intended for use with any software development methodology. The software V &V
process comprises the software V &V management activity and software V &V technical activities.
Each activity consists of several tasks, shown in Table 2-1. These tasks are defined in [FIPS 132]
and expanded in [WALLACE94].,Software V&V management is described in section 2.2. It ensures
that task selection is appropriate' for achieving the software V &V objectives; ensures the

3

Table 2-1. ,Major Software V &V Activities

I ACTIVITY I TASKS I
Software V&V Management ~Planning

-Monitoring
., -Evaluating results, impact of change

-Reporting

Software Requirements V&V .. -Review of concept documentation (if not performed prior to software

:
; ,requirements development)

"

-Traceability Analysis
-Software Requirements Evaluation
'-Interface Analysis
-Initial Planning for Software System Test
~Reporting

Software Design V&V ' -Traceability Analysis
- Software Design Evaluation
-InteifaceAnalysis

, "
-Initial Planning for Unit Test
-Initial Planning for Softw¥e Integration Test
-Reporting

CodeV&V -Traceability An al ysis
-Code Evaluation
-Interface Analysis .
-Completion of Unit Test Preparation
-Reporting

Unit Test -Unit Test Execution
-Reporting

Software Integration'Test -Completion of Software Integration Test Preparation
-Execution of Software Integration Tests
-Reporting

Software System Test4
, ' -Completion of Software System Test Preparation

-Execution of Software System Tests
" , -Reporting

Software Installatiol) Test -Installation Configuration Audit

-Reporting

Software Operation and -Impact-of-Change Analysis
Maintenance V&V -Repea~ Management V &V

-Repeat Technical V&V Activities "

4This document treats acceptance test as a function of the acquirer of the software system, while acknowledging
that the acquirer may sometimes work with V & V staff from the software requirements V &V through software installation
test to develop acceptance test. Tasks for acceptance test parallel those for software system test. Differences may exist in
the specific objectives, which may influence test requirements.

4

perfonnance and quality of the V & V effort; selects appropriate metrics and techniques applied to the
V & V results; and, conveys results of the V & V "tasks" to appropriate places.

The software V &V technical activities each have several tasks. Each task is accomplished by
applying one or more techniques. A specific technique, such as control flow analysis, focuses on
finding a specific type of problem, for example, a logic error. An aggregate of techniques is usually
necessary to achieve the objectives of a task. Section 2.3 discusses the tasks for each activity (sec. 3
describes techniques and the problem areas related to those techniques).

2.1 Independent V &V

Some software V &V activities may be performed by twei different groups. The use of a different
organization (other than the software development group) for software V & V is called independent
verification and validation (IV & V). The following is summarized from the chapter on IV & V in
[WILEY]. .

Technical independence requires that members of the IV & V team (organization or group) may not
be personnel involved in the developrnentof the software. This team must have some knowledge
about the system design or have related experience and engineering background enabling them to
understand the system. The IV &Vteam must not be influenced by the development team when the
IV & V team is learning about the system requirements, proposed solutions for building the system,
and problems encountered. Technical independence is crucial in the team's ability to detect the subtle
software requirements, software design, and coding errors that escape detection by development
testing and SQA reviews.

The technical IV&V team may need to share tools from the computer support environment (e.g.,
compilers,. assemblers, utilities) bu~ should execute qualification tests on these tools. to ensure that
the common tools themselves do not mask errors in the softw:are being analyzed and tested. The
IV&V team uses or develops its own set of test and analysis tools· separate from the developer's tools
whenever possible.

Managerial independence means the responsibility for IV &V belongs to an organization outside the
contractor and program organizations that develop the software. While assurance objectives may be
decided by regulations and project requirements, the IV & Vteam independently decides the areas of
the software/system to analyze and test, techniques to conduct the IV &V, schedule of tasks (within
the framework of the system schedules); and technical issues to act upon. The IV & V team provides
its findings in a timely fashion simultaneously to both the development team and the systems
management who acts upon the reported discrepancy and findings.

Financial independence means that control of the IV & V budget is retained in an organization outside
the contractor and program organization that develop the software. This independence protects
against diversion of funds or adverse fmancial pressures or influences that may cause delay or
stopping of IV &V analysis and test tasks and timely reporting of results.

5

The extent that each of these parameters is vested in the IV & V team's responsibilities defines the
degree of independence achieved. Based on the definitions oflV&V and how much IV&V a specific
project requires, some software V&V activities may be conducted by both the developer and another
organization. For example, unit test by one organization may focus on demonstrating that specific
objectives (e.g., safety objectives relative to the system), which may differ from the objectives of the
developer (e.g., logic structure, test coverage), have been met [IEEEP1059].

2.2 Software V & V Management

The process of software V&V needs to be managed and performed comprehensively over the entire
software development process. Management tasks, spanning all of the software development
activities, are to:

• Plan and maintain the software V & V process.

• Coordinate and interpret performance and quality of the software V & V effort.

• Report discrepancies promptly to the user or development group.

• Identify early problem trends and focus software V &V tasks on them.

• Provide a technical evaluation of the software performance and quality attributes at each
major software program review (so a determination can be made of whether the software
product has satisfied its set of software requirements well enough to proceed to the next
activity).

• Assess the full impact of proposed software changes.

An SVVP contains the information necessary to manage and perform software V & V. Majof'Steps
in developing an SVVP are to:

• Define (or confirm, if already provided) the quality and performance objectives (e.g., verify
conformance to specifications, verify compliance with safety and computer security objectives
relative to the system, assess efficiency and quality of software, and assess performance across
the full operating environment). .

• Characterize the types of problems anticipated in the system and define how they would be
manifested in the software.

• Select the software V &V analysis and testing techniques to effectively detect the system and
software problems. '

• Select the metrics and techniques applied to V & V results to measure and predict the quality
of the software.

6

The SVVP may include details for acquiring tools and for training personnel. The SVVP is revised
as knowledge accumulates about the characteristlcs-of the system, the software, and the,problem
areas in the software and in software V &V activities.

The software V &Vprocess could be tailored to specific applications; however, the risk of the
software failing and the subsequent consequences must be considered when selecting software Y & V
activities.

One software V &V management task is to monitor the software V &V technical progress and quality
of results. During each software V & V activity, planned software V & V tasks are reviewed and new
ones are added to focus on the critical performance/quality functions of the software and its system.
The monitoring task includes formal reviews of software V &V discrepancy reports and technical
evaluations to provide a check of their correctness and accuracy. Internal monitoring of the quality
and accuracy of software V &V results is essential because the development group must make the
necessary software changes as indicated by the software V& V results. If the software V & V results
are erroneous, or of poor quality, the development group wastes its time and resources in attempting
the changes, and more importantly, loses confidence in the effectiveness and helpfulness of the
software V &V results. Software V &V s~udies [RADATZ] have shown that responding to
discrepancy reports and software V &V -evaluation reports consumes the largest portion of a
development group's interface time with the software V &V group.

Boehm and Papaccio [BOEHM] report thatthe Pareto effect, that is, 20% of the problems cause 80%
of the rework costs, applies to software. They recommend that software V &V "focus on identifying
and eliminating the specific high-risk problems to be encountered by a software project." This does
not mean that software V&V should examine only 20% of the software. Rather, software V&V
needs to examine all the software. This includes: identifying potential hazards or threats to the safety
and security of the system, prioritizing the software functions by criticality, and allocating software
V&V analysis resources to those areas of the software which contain critica15 functions and high-risk
problems (i.e., more error-prone). Identifying and focusing on critic3.l and high-risk areas of the
software can be addressed by these software V &V methods:

• examination of early program deliveries to software V &V staff;
• use of software hazard (or threat) analysis; and
• conduct of a "criticality analysis" to identify the most critical functions of the software.

Various approaches in development can provide early product information to software V &V. These
include: prototypes, incremental software development, and handing over each unit or subfunction
following development unit testing. Incremental software development is an effective method of
providing early product information to software V & V. The early deliveries remforce the systematic
analysis and test approach used by software V &V to examine the software in smaller pieces while
progressively evaluating larger software pieces as each new piece is integrated. High-risk software
areas are easier to identify by using the incremental approach because the software V & V can:

5 A critical function is a function that must be performed, correctly and reliably; otherwise the system fails in a
manner that may have serious consequences.

7

• Provide an early lead time to evaluate each engineering solution ,and allow time to suggest
alternative solutions which ·can be incorporated in subsequentincremental deliveries without
adversely impacting the schedule.

• Isolate each new set of requirements and evaluate their'impact onthe system performance.

• Provide early indications of system perfonnarice so that adjustments cari be made to refine the
desired performance.

.. Develop trend infonnation about software anomalies and risk issues to allow time to adjust
the development and software V &V resources and planning 1'0 accommodate evolving
software 'risk issues.

In incremental developmertt,a software build (or early product) represents 'a basic program skeleton
including draft documentation containing portions of the full software capabilities. Each successive
build integrates additional functions into the skeleton. Based on discrepancy or progress reports from
software V&V, software program management can make the technical and management decisions
to refocus the software V &V and development team onto the program's specific problem areas of the
software.

Two related analyses; criticality and hazard, can help focus the V & V effort on those parts of the
program whose consequence of failure are most severe; A hazard is an (unsafe) "condition that may
lead to an unintended event that causes an undesirable outcome" [W ALLACE9l].. For example, a
driver ora car ignores warning lights at a rallroad 'crossmg and drives the car onto the tracks. The
hazard is the presence of the car and train on- the track at the same time. The unintended event
(mishap) is the train colliding with the car. The undesirable outcome is the ptobable loss of life and
damage to the car and train. The tenn "hazard" generally is used to refer to safety problems; the term
"threat" generally-is used to refer, to security problems. In this document, the methods and issues
related to hazard analysis 'are also applicable to security issues; the tenns "threat" and ~'security"
could be used in place of· "hazard" and~'safety" respectively.

Criticality analysis locates' and reduces high-risk problems .and is perfonned at 'the beginning of a
project. It identifies the functions and, units which are required to implement critical program
functions or quality requirements (e:g~, safety, computer security).· The steps of the analysis are:

• Develop a block diagram or control-flow diagram of the system and its software. Each block
or control-flow box represents a system or software function (unit).'

• Trace each critical function or qUality requirement through the' block or control flow diagram .
....

• Classify all traced software functions (units) as critical to either the proper execution of
critical software functions or the quality requirements.

• Focus additional analysis on these traced software functions (units).

8

• " Repeat criticality analysis for each activity to observe whether the implementation details shift
the criticality emphasis to othf!r or additional functions (units).

System hazard analysis is used to identify potential events and circumstances that might lead to
problems of varying degrees of severity, from critical failures resulting in loss of life or national
security problems, to less serious malfunctions in the system. Software hazard (or threat) analysis
focuses on the role of software relative to the ,hazards; or threats. Specific techniques that can be
used for hazard analysis are included in section 6 with the V &V techniques; these include event tree
analysis, software fault tree analysis, Petri-nets, and software failure mode, effects, and criticality
analysis. (Hewlett-Packard's Medical Systems Unit has developed a software hazard avoidance
process utilizing some aspects of these ,techniques [CONNOLLY].) ,

When identification of high risk areas from early deliveries, criticality analysis, and hazard (or threat)
analysis are used together, the software V &V approach can focus, on the most critical areas of the
early software products. Software V &V results, obtained ~arly enough in the software development
process, can have-significant impacton the quality and performance ofthe system under development.

2.3 , Software V &V Activities

Software V &V should begin when the project begins. Usually the first software V &V tasks are
conducted during the software requirements V &V activity. One V &V task is to examine the early
project documentation, often called concept documents, to verify, that the system to be built is not
only feasible but will use the rules; conventions, algorithms, and practices appropriate, to the
application domain of the system. Software requirements V& V is ,performed to ensure that the
specified,software requirements are correct, complete; consistent, accurate, readable, and testable,
and will satisfy the system requirements. Poorly specified software requirements (e.g., incorrect,
incomplete, ambiguous, or not testable) contribute to software cost overruns and' problems with
reliability. Even when software fully meets its requirements upon delivery, there maybe problems in
the maintenance ac~vity because general requirements (e.g., maintainability, quality, and reusability)
were not accounted for during the original development. Identifying software requirements is difficult
because the complexity of the problems being solved causes uncertainty in develo'ping the intended
system performance requirements. The occurrence of changes in requirements, (e.g., t,O incorporate
new technologies, new missions, new knowledge, new.interfacing systems,new people coming on
the scene) throughout the software development process adds significantly more chance for error.
Software requirements V&V is intended to prevent these problems from occurring.

Design errors can be introduced by misrepresentation of, the functional requirements and _ by
implementation constraints relating to timing, data structures, memory space, and accuracy. Software
design V & V provides assurance that software requirements ,are not misrepresented or incompletely
implemented; that extraneous software requirements are not designed into the solution by oversight;
that software requirements are notleft out of the software design; and that· other constraints are
managed correctly.

Clerical and syntactical errors have been greatly reduced through use of structured programming,
reuse of code, adoption of programming standards and style guides, availability of more robust
computer languages, better compiler diagnostics and automated support, and, finally, more

·9

knowledgeable programmers. Nevertheless, problems still occur in translating design into code and
code V & V continues to be an important software V & V activity.

Test management is an important part of the software V & V activity in which all testing needed for
the software system is considered and planned. Software V&V test planning begins with software
requirements and spans almost the full range of activities. Test planning .tasks encompass different . .

types oftesting--unit test, software integration test, and software system test. The planning activities
result in documentation for each test type consisting of test plan, test design, test case, and test
procedure documents.

Unit test verifies the design and implementation of software units. Software integration test verifies
functional requirements as the software units are integrated together. Special attention is focused on
software, hardware, and operator interfaces.· Software system test validates the entire software
program against system requirements and software performance objectives. Software system tests
validate that the software executes correctly within its stated operating environment. The software's
ability to deal properly with anomalies. and stress conditions is emphasized. Software V & V tests are
not intended to duplicate or replace the user and development group's test responsibilities, but instead
test behavior not normally checked by the user or development group.

Software installation test validates that the software operates correctly with the operational ha;dware
system and with other software, as specified in the. interface specifications. It verifies that the
installation procedures are correct and adequate, that the software is the same as the executable code
delivered for installation, and that all supporting software products are the proper versions. Software
installation test verifies that the software has been accurately tailored for site-dependent parameters
and that the configuration of the delivered product is correct.

In software operation and maintenance V&V, when a software change is made, all software V&V
activities are .considered and possibly repeated to ensure that nothing is overlooked. Software V &V
activities include examining the impact of the change throughout the system to understand what
software V & V activities are needed. Software V & V activities are added or deleted to address the
type of software change made. In many cases, an examination of the proposed software change
shows that software V &V needs to repeat its activities on only a small portion of the software. Also,
some software V&V activities, such as verifying the original concepts, require little or no effort to
verify a small change. Small changes can have subtle but significant side-effects in a software
program; for this reason, change analysis (a software operation and maintenance V&V task) is
significant in preventing unintended functions and problems from making their way into new versions
of the system.

2.3.1 Software Requirements V & V

The software requirements V & V activity checks that the allocation of system requirements to
software is appropriate and correct, and how well the software requirements have been specified
(e.g., correct, complete, nonambiguous, testable). It should be structured to ensure that the software
objectives have been met. Verification of the software requirements should include an examination
of documentation produced earlier in system development (e.g., initial feasibility studies~ concepts
on which the system has been designed) if this examination has not already been performed. If the

10

assumptions, algorithms, and physicahules imposed on the software requirements previously have
not been verified to be appropriate fMthis project, then software V &V should perform those checks.
Inputs to the software requirements V & V activity may be documents written in natural or formal
mathematical languages and may include graphics and charts. When formal mathematical languages
are used, other forms of representations may be provided to different users of the specifications.
Software requirements verification must ensure fidelity among the forms of representation.
[NIST223]

Concurrently with software requirements V &V,. software system test planning in initiated. Software
V & V examines all the proposed testing for the system to ensure that comprehensive testing and
appropriate resources are planned. Each type of testing (unit, software integration, software system)
is discussed more fully in this report. When the system tequirementsandthe software requirements
have been specified and reuse of software is identified, reuse issues identified in section 4 must be
checked to enSure the software is suitable for the application domain and the operating environment.

The remainder of this section elaborates on software requirements V &V for general V &V tasks, for
V &V tasks specifically designed for reused software, and those for knowledge-based systems (KBS).

General6

• Conduct a concept documentation evaluation.

~ Evaluate the defined concept to determine whether it satisfies user needs arid project
objectives in terms of system performance requirements, feasibility (e.g., compatibility
of hardware capabilities), completeness, and accuracy.

Identify major constraints of interfacing systems and constraints/limItations of the
proposed approach and assesses the allocation of system functions to hardware and
software, where appropriate.

~ Assess the criticality of each software item defined in the Concept.

• Begin test planning.

• Conduct a software traceability analysis - Trace software requirements to system
requirements (and vice versa) and check the relationships for accuracy, completeness,
consistency, and correctness; check that allocation is appropriate and complete.

• Conduct a software requirements evaluation.

~ Evaluate the software requirements for accuracy, completeness, consistency,
correctness, testability, and understandability.

6y &y tasks related to testing are discussed in. sections 2.3.4 through 2.3.6 ..

11

Measure completeness by . verifying existence and correctness of, deftning
properties:, initiator of action, action, object of action, condItions, constraints,

. source, destination, mechanism, and reason.

Verify . correctness and appropriateness of software c requirements and
assertions (executable statements that may be required in the software as fault
tolerance protections for the system safety and computer security objectives
(e.g., checking algorithms, states and integrity of system and the responses to
unfavorable results of the assertions)). Verify the operation of the assertions
will not adversely impact system performance.

Verify correctness and appropriateness of fault tolerance requirements. Verify
that the operation of the assertions will not adversely impact system
performance.

.. Assess how well the software requirements accomplish the system and software
objectives.

Identify critical areas of software by assessing criticality of software requirements.

... Evaluate software requirements for compliance to software requirements standards
and software engineering practices.

• Conduct a software interface analysis - Evaluate software requirements with hardware, user,
operator and . software interface requirements. for accuracy, completeness,. consistency,
correctness, and understandability.

Reuse-Speciftc

• . Evaluate the ,reused software for conformance to its performanc~ goals, to identify
constraints of interfacing systems, to allocation functions· to, hardware and software, . and
to assess criticality of each software item.

• Conduct software interface analysis to evaluate. reused software to new requirements for
accuracy, completeness, consistency, correctness, and understandability, re.1ative to the
operating environment of both the . reused and the new software and to .. the application
domain. When COTS is considered for use in a new system, this task is especially signifIcant
for'ensuring that the COTS will match the system interfaces in the operating environment.

• Compare the new software system objectives to the content of the reused documentation and
the reused code to ensure the:

.. availability of all necessary fIles;

adequacy of user manual (compare to the requirements for' the user'manual in
softwar:e development); and,

12

~ compatibility of the software,hardware, and system enviroiunent (e.g., wanhe old
system designed for a 16 bit machine and will now be on a 32 bit machine?).

• If the reused software is COTS, consider whether any functions of the software are to be
blocked out from usage;' if the consequences of any functions are unknown; and, the
operational history of the COTS relative to failure.

. -

KB S~Specific

• Verify the scope and complexity of the proposed domain for the KBS.

• Verify the correctness and appropriateness of the requirements on accuracy and completeness
ofthe expected results (e.g., is the system supposed to perform like a student or an expert?).

• Verify that the selected tools can implement a domain model of the expected scope and
complexity. .

• Deteinrine how accuracy of the system will be evaluated and against what standard it will be
evaluated.'

• Detenriine the volatility of the dorn:ainmodel and strategy for updating the knowledge base.

2.3.2 Software Design V & V

The software design V &V activity occurs 3iterthe software requirements have undergone the
software V &V process and the software design, or an increment of the software design, has been
completed.7 The software V & V tasks of traceability, evaluation, and interface analysis provide
assurance that software requirements are not misrepresented, incompletely implemented, or
incorrectly implemented. By verifying that the software design meets its software requirements, the
software design V&V- activity also supports validation· that the software design meets system
requirements. There may be. several instantiations of the software requirements and software design
verification before the entire system is. verified. [NIST223]

When· the software system is designed, decisions may be made to incorporate existing software.
Again, the issues identified ill section 3 must be considered by software V &V to ensure that the
reused software is appropriate, and that the software design takes into account any changes that must
be made to. the reused -software' to -accommodate the operating environment and the application
domain. The tasks and techniques are the same as for the software being developed, but the
objectives and issues are specific for reuse.

The remainder of this section elaborates on software design V&V for general V&V tasks, for V&V
tasks specifically designed for reused software, and those for KBSs.

7According to the model used for development, the software V &V process may be exercised on the entire software
design or software design increments, but always traceable back to the software requirements.

13

General

• Conduct a software design traceability analysis - Trace software design to software
requirements, and vice versa. Check the relationships for accuracy, completeness, consistency,
and correctness.

• Conduct a software design evaluation.

.. Evaluate the software design for accuracy, completeness, consistency, correctness;
and testability.

.. . Evaluate software design for compliance with software design standards; language
standards if appropriate; and software engineering practices.

.. . Assess software design against assigned quality attributes.

• Conduct a software design interface analysis - Evaluate. software design for accuracy,
completeness, consistency, and correctness of hardware, operator and software interface
requirements.

• Verify that the software requirements for assertions, responses to assertions and other
required system algorithm and integrity checks or fault tolerance protections have been
designed into the software. Check that the software design is complete and accurate and will
not adversely affect system performance.

• Coordinate with software integration test planning.

Reuse-Specific

• Conduct an .evaluation of the ,original software design documentation for compliance to
software design requirements of the new system. Verify interface requirements. Generate
any needed software design information or justify the use of the software without the
required information. This determination should be based on recognized risk (safety, cost of
modifications, impact of various degrees of uncertainty on the project) and coordinated with
the user.

• If any modifications are needed, evaluate whether or not the software and documentation ar,e
adequate to support the modification (e.g., for change analysis, testability). If not, the needed
information should be obtained or developed. If this is not prudent, modifications should not
be made when they cannot be supported by adequate software design information.

14

KBS-Specific

• Verify that the domain model:

~ is complete and consistent; and,
~ represents the domain knowledge ..

• Verify that the domain model addresses, at the required level of accuracy and completeness,
the range of expected problems.

• Verify that the domain model operates in the specified scope.

2.3.3 Code Verification

The code verification activity verifies correct iniplementation of software design into code.. Often this
activity requires tedious checking of details within the code; automation provides protection against
human error in gathering the code information for analysis and also can speed the process. Code
verification is the last opportunity to find and remove errors that could cause unnecessary costs and
delays from advancing poor code into any of the test activities. Code validation is accomplished
through unit test which is described in section 2.3.4. [NIST223]

At this point in the software development process, the reuse issues should have been examined and
the decision made to reuse or not to reuse the software. In the case that changes are to be made to
the code, or if there is a possibility changes will be needed in a future version of the software system
under development, some·software V &V tasks may be needed.

The knowledge base should be internally consistent and reflect the domain model. In its simplest
form, maintaining knowledge base consistency (or integrity) means not allowing a fact and its
negation to both be part of the knowledge base. More extensive consistency checks can disallow rules
that would, potentially, infer both a fact and its negation. Knowledge consistency is a key issue. A
consistent domain model and a consistent representation of that model is critical. This is especially
true for domains representing physical structures or controlled equipment.. The model of the
equipment and the physics controlling the behavior of the equipment must be consistent for computer
controllers to function properly. In other domains, expert disagreement over the interpretation of a
set of facts may be normal and' expected. For example, legal disputes frequently involve the
interpretation ofthe facts themselves. Probabilities can be one way to handle conflicting knowledge.

The remainder of this section elaborates on code verification for general tasks, for verification tasks
specifically designed for reused software, and those for KBSs.

General

• Conduct a·source code traceability analysis - Trace source code to software design, and vice
versa. Check the relationships for accuracy, completeness, consistency, and correctness.

15

• Conduct a source code e.val~ation.

~ Evaluate the source code for accuracy, completeness, consistency, correctness, and
testability.

~ Evaluate'source code for compliance with code standards, language standards if
appropriate, and software engineering pr<l:ctices.

~ Assess source code against assigned quality.attributes.

• Conduct a source code interface analysis-. Evalua,te the. source code for accuracy,
completeness, consistency, and correctness with respect to the hardware, operator, and
software interfaces. '.

• Evaluate draft code-related documents (e.g., user manual, commentary within the code) with
source code for completeness, consistency, and correctness.

• Coordinate with unit tests.

Reuse:.. Specific

• If the source code is, available, compare it to known, design specifications. Evaluate for
correctness, consistency, completeness, and accuracy. Assess the interfaces for consistency
with the system in which the reused c.ode will be placed. Ass~ss source~ode .quality. (This
task may be needed in instances where the history of the code is not well-known.)

• Evaluate source code for testability. Evaluate code-related documentation received from the
source for suitability for any future modifications:

KBS-Specific

• Conduct a logical verification of the structure of the knowledge and rules in the knowledge
base for consistency, completeness, etc.

• Verify that the knowledge base implements the domain model accurately.

2.3.4 Unit Test

Unit test is the test of the software elements at the lowest level of development. .Units may be
aggregates of software elements. Planning for unit test should occur concurrently with tpe software
design activity. Reused software will probably not undergo unit test; unless changes were made to
the units. Then, appropriate testing is performed as in regression testing ..

8Unit test is actually a part of code V &V.

16

The remainder of this section elaborates on unit test for general V &V tasks, for V &V tasks
specifically designed for reused software, and those for KBSs.

General 'I I'

• '. Test planning - Establish the objectives of the unit test; the strategies to be employed, the
coverage requirements, reporting and analysis, and close-out of anomalies ..

• Generate, monitor, and update the unit test plan to accomplish objectives.

• Trace test design, cases, procedures, and execution results to the unit designs.

• ConfIrm that anomalies during test are software anomalies, and not problems detected for
other reasons. '

• Generate test cases ,and procedures - Develop test cases and procedures for unit test and
continue tracing as required by software test plans.

• Perform unit test - Check individual software units for typographical, syntactic, and logic
errors to ensure that each correctly implements the software design and satisfIes the software
requirements; execute the test cases; analyze results to verify anomalies; recommend changes
to software design or code; and conduct retesting as necessary.

• Document test activities and results.

Reuse-SpecifIc

• Evaluate existing test cases and reports for suitability for intended use ..

• Prepare test cases and test procedures if any modifications are made to the reused software:

• Follow the criteria for unit test.

KB S-Specific

• Evaluate the knowledge and rules in the knowledge base against the domain knowledge.

• Establish objective for testing portions of domain knowledge.

• Plan tests for accuracy and completeness of domain model.

• Define test procedures to test for expected performance level of the system. '

17

2.3.5 Software Integration Test
,

The software integration test activity is performed to examine how units interface and interact with
each other with the assumption that the units and the objects (e.g., data) they manipulate have all
passed unit tests [BElZER]. Software integration tests check the interaction with other software
(e.g., libraries) and hardware. The software integration test schedule depends upon the development
and integration schedules for software units, hardware, and ,other. components. 'Por large systems,
software integration test planning may require close coordination among all system personnel to
ensure that the overall test objectives are achieved by the selected 'test strategy. Por each major
integration that has successfully undergone interface and interaction testing, functional tests may be
developed and executed [BElZER]. When all system components have been integrated and have
successfully undergone software integration tests, then the system moves into software system test.
During software integration test, reused software units are integrated into the system. It is critical
to test that the interfaces are correct, and that the resulting software meets operating requirements.

The remainder of this section elaborates on software integration test for general V & V tasks, for V & V
tasks specifically designed for reused software, and those for KBSs.

General

• Test planning - Establish the objectives of the software integration test, the strategies to be
employed, the coverage requirements, reporting and analysis, and close-out of anomalies.
Ensure that interface testing of reused software to other system software is planned.

• Generate, monitor, and update a software integration test plan to accomplish identified
objectives.

• Trace test design, cases, procedures, and execution results to software requirements.

• Generate test cases and procedures - Develop test case~ and procedures for unit test and
continue tracing as required by software test plans.

• Perform software integration test.

.. Check the inter-unit communication links and test aggregate functions formed by
groups of units.

Confirm that anomalies during test are software anomalies, and not problems detected
for other reasons.

Ensure any changes to software requirements, software design, or code are made.
Conduct retesting as necessary.

.. Conduct functional, structural, performance, statistical, 'and coverage testing of
successfully integrated units after each iteration of software integration and successful
testing of interfaces and interactions.

18

• Document test activities and results.

Reuse-Specific

• Perform software integration test in accordance with test procedures.

• Analyze results to determine if the software implements the intended use requirements and
known design and that the software units function correctly together.

• Conduct interface tests of reused units with other system components.

• Conduct tests of reused units with other system components to validate performance
requirements.

• Evaluate existing test cases and -reports for suitability for intended use.

• Prepare test cases and test procedures if any modifications are made to the reused software.

• Follow the criteria for software integration test.

KBS-Specific

. • . Evaluate knowledge base for completeness and consistency.

• Verify that the knowledge base represents the full scope of the domain model.

2.3.6 Software System Test

Software system test, in the context. of software V &V, involves the conduct of tests to execute the
completely integrated system. Software system test is. the validation that the software meets its
requirements. Validation of the complete system may involve many tests involving all system
components. The software system tests exercise those system functions that invoke software to
determine whether the software behaves as intended relative to complete system performance. These
tests must be conducted in such a manner as to stress the system based on software responses to
system inputs (e.g., from sensors, operators, databases). Tests and data collected from the tests are
designed to provide an operational profile of the system which support a statistical analysis of the
system reliability [MUSA87, MUSA89, BUTLER]. This section of the report addresses only the
tests that validate that the software implements the system requirements; other tests for other
components and perspectives are necessary for complete system validation.

While software system tests are conducted after the system has been built, it is imperative that
planning for these tests is conducted concurrently with the software requirements activity because:

• Analyzing the software requirements for test requirements may result in fmding software
requirements· errors and/or discovery of untestable requirements.

19

- Establishing test facilities (e.g., model of operational environment) and Computer-Aided
Software Engineering (CASE) tools (e.g., test case generators, test data base) may require
as much time as development of the system.

For -reused software, software System test is performed to assure that the software is correct,
consistent with prior documentation, complete for use anellor modification, and accurate. At the
system leveL reused software should be considered part of the system. Tests are in accordance with
test procedures .. Results are documented and traced as required by the software system test plan.

The remainder of this section elaborates on software system test for general V &V tasks, for V &V
tasks specifically designed for reused software, and those for KBSs.

General

- Test planning - Establish the objectives of the software system test, the; strategies to be
employed, the coverage requirements, reporting and analysis, and close-out of anomalies.

- Generate, monitor, and update a software system test plan to aCComplish objectives.

- Trace system and software requirements -to test software design, cases, procedures, and
execution results. -

- Generate test cases and procedures - Develop test cases and procedures for unit test and
continue tracing as required by software system test plans.

- Test the operation of the software as an entity (sometimes a simulated environment may be
used); confirm that anomalies during test are software anomalies, not problems detected for
other reasons; ensure any changes to software (software requirements, software design, code,
or test cases) have been made; and conduct retesting as necessary. -

- Document test activities and results.

Reuse-Specific

- Evaluate existing test cases and reports for suitability for intended use.

- Prepare test cases and test procedures if any modifications have been made to -the reused
software.

-Follow -the criteria for software system test within the boundaries of the known and
documented software design.

- Define procedures for testing the system according to the expected knowledge of the end
user.

20

2.3.7 . Software Installation Test

The software installation test activity is the fmal,step beforelaunching full customer acceptance
testiIig. The purpose of installation test is to demonstrate that the correct software has been delivered
and that the .software interfaces are correct relative to any interfaces. at the installation site.
Acceptance testing, which involves theuser/customer, is outside the scope of this document ..

The remainder of this section elaborates on installation test for general V &V tasks ,for V &V·tasks
specifically designed for reused software, and those for KBSs.

General

• Conduct an installation configuration audit.

~ Determine that all software outputs needed to operate the. system are present.

Check that the software installed in the system' is the software that underwent
software V&V.

• Develop and execute tests that will examine and stress site-unique parameters (e.g., printer
interface, operating system interface, monitor interfaces).

• Generate applicable documentation.

• Generate an SVVR (or generate it at the end of the software V &V process).

Reuse-Specific·

• Conduct an installation config~ration audit to. verify that any reused software that has not
been modified is the current version.

KB S-Spedfic

• Ensure that data and updates to the knowledge bas~ which are supplied from external sources
are in an acceptable form.

2.3.8 Software Operation and Maintenance V &V

The software operation V & V activity requires periodic checks that the integrity of the system has
been maintained, that any changes to the system which affect its operation have been documented,
and operators have received training in new or changed procedures. The software maintenance V &V
activity requires planning for software V &V based on the extent of the maintenance (e.g., adaptive,
corrective, perfective [FIPS 1 06]), and hence a revisit of all the software development activities. to
identify to what extent each software V &V activity must be performed. . '

21

If software V &V has not been performed during software development, then the V &V during
software operations and maintenance must consider performing a selected set of tasks from the
software V &V activities related to earlier development activities. Some activities may include
generating software requirements or software design information from source code, an activity
known as reverse engineering. While costly and time consuming, it is necessary when the need exists
for a rigorous software V & V effort.

The. remainder of this section elaborates on software operation and maintenance V & V for general
V &V tasks, for V &V tasks specifically designed for reused software, and those for KBSs.

General

• Conduct an anomaly evaluation - Evaluate the severity of anomalies during software
operation and their effect on the system.

• Conduct a proposed change assessment - Assess proposed changes to the software and their
effect on the system to determine software V &V activities from earlier development to be
repeated. Conduct them.

• Develop an SVVP.

Reuse-Specific

Follow the guidance for reuse in section 4.

KBS-Specific

• Plan for update of knowledge base including domain model.

• Determine mechanisms used for updating knowledge base.

22

3 SOFTWARE V&V TECHNIQUES

The conduct of software V &V tasks to fulfill the requirements of the V &V activities generally
involves techniques selected from three major classes: static, dynamic, and formal analysis. Static
analysis techniques are those which directly analyze the form and structure of a product without
executing the product [FIPSlOl]. Reviews, inspections, audits and data flow analysis are examples
of static analysis techniques. Static analysis techniques are traditionally applied to software
requirements, software design and source code. They may also be applied to test documentation,
especially test cases, to verify their traceability to the software requirements, their adequacy to fulfill
test requirements, and their accuracy.

Dynamic analysis techniques involve execution, or simulation, of a development activity product to
detect errors by analyzing the response of a product to sets of input data [FIPS101]. For these
techniques, the output values, or ranges of values, must be known. Testing is the most frequent
dynamic analysis technique. Prototyping, especially during the software requirements V &V activity,
can be considered a dynamic analysis technique; in this case the exact output is not always known but
enough knowledge exists to determine if the system response to the input stimuli meets system
requirements.

Formal analysis is the use of rigorous mathematical techniques to analyze the algorithms of a solution
[FIPS101]. Sometimes the software requirements may be written in a formal specification language
(e.g., VDM, Z) which can be verified using a formal analysis technique like proof-of-correctness. The
term Jormaloften is used to mean a formalized process, that is, a process that is planned, managed,
documented, and is repeatable. -In this sense, all software V &V techniques are formal, but do not
necessarily meet the definition of the mathematical techniques involving special notations and
languages.

Table 3-1, at the end of this section, lists the software V & V techniques addressed in this report and
indicates under which V &V activities these techniques can be applied. This report does not
necessarily address all software V &V techniques ..

3.1 Strategies for Choosing Techniques

Some software V &V techniques used during software requirements V &V tasks are control flow
analysis, data flow analysis, algorithm analysis, and simulation. Control and data flow analysis are
most applicable for real time and data driven systems. These flow analyses transform logic and data
requirements text into graphic flows-which are easier to analyze than the text. PERT, state transition,
and transaction diagrams are examples of control flow diagrams. Algorithm analysis involves re
derivation of equations or evaluation of the suitability of specific numerical techniques. Simulation
is used to evaluate the interactions of large, complex systems with many hardware, user, and other
interfacing software units.

Some software V &V techniques used during software design V &V tasks include algorithm analysis, -
database analysis, sizing and timing analysis, and simulation. Algorithm analysis examines the
correctness of the equations or numerical techniques as in the software requirements activity, but also
examines truncation and round-off effects, numerical precision of word storage and variables (e.g.,

23

single- vs. extended-precision arithmetic); and data typing ihfluences. Database analysis is particularly
useful for programs that store program logic in data parameters. A logic analysis of these data values
is required to determine the effect these"parameters have on program control. Sizing and timing
analysis is useful for real-time programs having response time requirements and constrained memory
execution space requirements ..

Some software V&Vtechniquesused during code V&V'tasks are control flowimalysiS', database
analysis, regression analysis, and sizing and timing analysis. Fodarge code developments, control
flow diagrams showing the hierarchy of main routines and their subfunctions are useful in
understanding the flow of program control. . Database analysis is performed on programs with
significant data storage to ensure common data and variable regions are used consistently between
all call routines. Data integrity is enforced and no data or ,variable can be accidentally overwritten by
overflowing data tables. Data typing and use are consistent throughout all program elements.
Regression analysis is us~ to reevaluate software requirements and software design issues whenever
any significant code change is made. This technique ensures project awareness of the original system
requirements. Sizing and timing analysis is done during incremental code development and compared
against predicted values. Significant deviations between actual and predicted values is a possible
indication of problems or the need for additional examination.

Another area of concern to software V&V is the ability of compilers to generate object code that is
functionally equivalent to the source code, that is, reliance on the correctness ·of the language
compiler to make data dependent decisionsabour abstract programmer coded infonnation. For
critical applications, this problem is solved by validating the compiler or by validatIng that the object
code produced by the compiler is functionally equivalent to the source.

Code reading is ano~her technique that may be used for source code:verification. An.expert reads
. through another programmer's code to detect errors .. In an experiment conducted at the National
Aeronautics and Space Administration Goddard Space Flight Center, code reading was found to be
more effective than either functional testing or strueturaltesting ·[BASILI]. The reason was attributed
to the expertise of the readers who, as they read the code, were simulating its execution and were able
to detect many kinds of errors ..

Other techniques commonly used are walkthroughs, inspections and reviews: These tasks occur in
interactive meetings attenped by. a team which usually includes at least one member from the
development group~ Other members may belong to, the development group or to other groups
involved in software development. The duration of these meetings is usually no more than a few hours
in which code is examined on a line-by-line basis. In these interactive sessions, it may be difficult to
examine the code thoroughly for control logic, data flow, database errors, sizing, timing and other
features which may require considerable manual or automated effort. Advance preparation for these
activities may be necessary and includes code analysis techniques. The results of these techniques
provide appropriate engineering information for discussion at meetings' where code is evaluated.
Regardless of who conducts or participates in walkthroughs and inspections, software V & V analyses
may be used to support'these meetings.

A comprehensive test management approach to testing recognizes the differences in strategies and
in objectives for unit, software integration, and software system test. Unit test verifies the design

24

and implementation of software units. Software integration test verifies functional requirements as
the software units are integrated. Special attention is focused on software, hardware, and operator
interfaces. Software system test validates the entire software program against system requirements
and software perfonnance objectives. Software system tests validate that the software executes
correctly within its stated operating environment. The software's ability to deal properly with
anomalies and stress conditions is emphasized. These tests are not intended to duplicate or replace
the user and development group's test responsibilities, but instead supplement the development testing
to test behavior not nonnally tested by the user or development group.

Effective testing requires a compreh.ensive understanding of the system. Such understanding
develops from. systematically analyzing the software's concept, requirements, design, and code. By
knowing internal software details, software V &V testing is effective at. probing for errors and
weaknesses that reveal hidden faults. This is considered structural, or white-box, testing. It often
finds errors for which some functional, or black-box, test cases can produce the correct output
despite internal errors. .

. .

Functional test cases execute part or all of the system to validate that the user requirement is satisfied;
these test cases cannot always detect internal errors that will occur under special circumstances.
Another software V &V test technique is to develop test cases that violate software requirements.
This approach is effective at uncovering basic design assumption errors and unusual operational use
errors. The process of planning fUIictional test cases requires a thorough examination of the
functional requirements. An analyst who carefully develops those test cases is likely to detect errors
and omissions in the software requirements. In this sense test planning can be effective in detecting
errors and.can contribute to uncovering some errors before test execution.

The planning process for testing must take into account the specific objectives ofthe software V & V
for the software and the impact of different test strategies in satisfying these objectives. Frequently,
the. most effective strategy may be to combine two or more strategies. More infonnation and
references on software testing may be found in [WILEY].

Criticality analysis may be used·to identify software V &V techniques to address high-risk concerns.
The selection of V &V techniques for use on each critical area of the program is a method of tailoring
the intensity of the software V & V against the type of risk present in each area of the software. For
example, software V &V would apply algorithm analysis to critical numerical software functions, and
techniques such as sizing and timing analysis, data and control flow analysis and interface analysis to
real-time executive functions.

3.2 Descriptions of Techniques

The following are summary descriptions of techniques taken from [BAHILL], [BEN], [EWICS3],
[KIRANI], [NBS93], [NGUYEN], [NIST209], [NIST5589], [NUREG6316], [OKEEFE],
[OLEARy], [TURING],[VOAS91,92,95], [WALLACE94], and [WILEY]. Issues (in italics at the
end of each description) include the types of errors the technique may find, the tasks the technique
supports, and other related techniques (to or from which supporting information is provided).

25

• Algorithm analysis examines the logic' and accuracy of the software requirements by
translating algorithms into some language or structured format. The analysis involves
rederiving equations or evaluating the suitability of specific numerical techniques. It checks
that algorithms are correct, appropriate, stable, and meet all accuracy, timing, and sizing
requirements. Algorithm analysis examines the correctness of the equations and numerical
techniques, truncation and rounding effects, numerical precision of word storage and variables
(single vs. extended-precision arithmetic), and data typing influences. Issues: accuracy;
algorithm efficiency; correctness; consistency in computation; error propagation; numerical
roundoff; numerical stability; space utilization evaluation; system peiformance prediction;
timing.

• Analytic modeling provides performance evaluation and capacity planning information on the
software design. It represents the program logic and processing of some kind of model and
analyzes it for sufficiency. Issues: accuracy; algorithm efficiency; bottlenecks; error
propagation; feasibility; modeling,· numerical roundoff; numerical stability,' processmg
efficiency; system performance prediction.

• Back-to-back testing detects test failures by comparing the output of two or more programs
implemented to the same specification. The same input data is applied to two or more
program versions and their outputs are compared to detect anomalies. Any test.data selection
strategy can be used for this type of testing, although random testing is well suited to this
approach. Also known as comparison testing. Issues: anomalies or discrepancies between
verSLOns.

• Boundary ya1ue analysis detects and removes errors occurring at parameter limits or
boundaries. The input domain of the program is divided into a number of input classes. The
tests should cover the boundaries and extremes of the classes. The tests check that the
boundaries of the input domain of the specification coincide with those in the program. The
value zero, whether used directly or indirectly, should be used with special attention (e.g.,
division by zero, null matrix, zero table entry). Usually, boundary values of the input produce
boundary values for the output. Test cases should also be designed to force the output to its
extreme values. If possible, a test case which causes output to exceed the specification
boundary values should be specified. If output is a sequence of data, special attention should
be given to the first and last elements and to lists containing zero, one, and two elements.
Issues: algorithm analysis; array size; ineonsistencies between limits; specification error.

• Code reading involves an expert reading through another programmer's code to detect errors.
The individual is likely to perform a pseudo-execution (mentally) of the code to pick up errors
before compilation. Issues:' correctness; misuse of variables; omitted functions; parameter
checking; poor programming practices; redundancy.

• Control flow allalysis transforms text describing software requirements into graphic flows
where they can be examined for correctness. Itchecks that the proposed control flow is free
of problems (e.g., unreachable or incorrect software design). Control-flow analysis is used
to show the hierarchy of main routines and.their subfunctions and .checks thatthe proposed
control flow is free of problems (e.g., unreachable or incorrect code elements). It detects

26

poor and potentially incorrect program structures. Issues: assertion testing/violations;
bottlenecks; boundary test cases; branch and path identification; branch testing; cell
structure of units; correctness; software design evaluation; error propagation; expected
vs. actual results; file sequence ertor; formal specification evaluation; global information
flow and consistency; hierarchical interrelationship of units; inaccessible code; software
integration tests; inter-unit structure; loop invariants; path testing; processing efficiency;
retest after change; system performance prediction; test case preparation; unit tests.

• Coverage analysis measures how much of the structure of a unit or system has been exercised
by a given set of tests. System level coverage measures how many of the unit parts of the
system have been called by a test set. Code coverage measures the percentage of statements,
branches, or lines of code (LOC) exercised by a test set. . Issues.: unit tests, software
integration tests, software system tests.

• Critical timing/flow analysis checks that the process and control timing requirements are
satisfied by modeling those aspects of the software design. Issues: modeling;
synchronization; timing.

• Database analysis ensures that the database structure and access methods are compatible with
the logical design. It is performed on programs with significant data storage to ensure that
common data and variable regions are used consistently between all calling routines; that data
integrity is enforced and no data or variable can be accidentally overwritten by overflowing
data tables; and that data typing and use are consistent throughout the program. Issues:
access protection; data characteristics and types; software design evaluation; file sequence
error; global information flow; processing efficiency; space utilization eval~ation; unit tests.

• Data flow analysis is important for designing the high level (process) architecture of
applications. It can check for variables that are· read before they are written, written more
than once without being read, and written but never read. Issues: assertion testing/violations;
bottlenecks; boundary test cases; branch and path identification; branch testing; cell
structure of units; data characteristics; environment interaction; error propagation;
evaluation of program paths; expected vs actual results; file sequence error; global
information flow and consistency; hierarchical interrelationship of units; inter-unit
structure; loop invariants; processing efficiency; retest after changes; software design
evaluation; software integration tests; system peiformance prediction; test case preparation;
un initialized variables; unused variables; variable references.

• Decision (truth) tables provide a clear and coherent analysis of complex logical combinations
and relationships. This method uses two-dimensional tables to concisely describe logical
relationships between boolean program variables. Issues: logic errors.

• Desk checking involves the examination of the software design or code by an individual,
usually an expert other than the author, for obvious errors. It can include looking over the
code for obvious defects, checking for correct procedure interfaces, reading the comments
to develop a sense of what the code does and then comparing it to its external specifications,
comparing comments to software design documentation, stepping through with input

27

conditions contrived to "exercise" all paths including those not directly related to the external
specifications, and checking for compliance with programming standards and conventions.
Issues: anachronistic data; calls to subprograms that do not exist; data fields unconstrained
by data boundaries; failure to implement the design; failure to save or restore registers;
improper nesting of loops and branches; improper program· linkages; improper sequencing
of processes; incomplete predicates; inco"ect access of array components; ineffident data
transport; infiniteioops; initialization faults; input-output faults; instruction modification;
inverted predicates; mismatched parameter lists; missing labelsor code; missing validity
tests; misuse. of variables; prodigal programming; unauthorized recursion; undeclared
variables; unreachable code; unreferenced labels.

•. Error seeding determines whether a set oitest cases is adequate by inserting ("seeding")
known error types into the program .and executing it w~th the test cases. If only some of the
seeded errors are found, the test case set is not adequate. The ratio of found seeded errors
to the total number of seeded errors is an estimation of the ratio of. found real errors to total
number of errors, or

NumberSeededErrorsFound NumberRealErrorsFound

TotalNumber S eededErrors TotalNumberRealErrors

One can solve for the total number of real errors,since the values of the other three are
known. Then, one can estimate the number of errors remaining by subtracting the number
of real errors found from the total number of real errors. The remaining test effort can then
be estimated. If all the seeded errors are found, this indicates 'that either the test case set is
adequate, or that the seeded errors were too easy to find. Issues: test case adequacy.

• Eyent tree analysis uses a bottom-up approach to model.the effects of an event that-may have
serious repercussions. The initiating event is the root of the event tree. Two lines are drawn
from the root, depicting the positive and negative consequences of the event. This is done
for each subsequent consequence until all consequences are.considered. Issues: hazard
analysis; safety; threat analysis; timing.

• Finite state machines (FSM) check for incomplete and inconsistent software requirements by
modefug the software in terms of its states,inputs and actions. A system in state Sl receives

, an input I, then carries out action A, and moves to state S2 is an example. FSlyls can check
that there is an action and new state for every input in every state, and that only one state
change is defmed for each state and input pair. Issues: incomplete software requirements
specification; inconsistent software requirements; modeling.

• Functional testing executes part or all of the system to validate that the user requirement is
satisfied. Issues: boundary test cases; branch and path identification; branch testing; file
sequence' error; path testing; program execution characteristics,~: retest after change;
statement coverage testing,: :system performance prediction; software system tests; test case
preparation; test thoroughness; unit test; uninitialized variables; unuse,d.variables; variable
references; variable snapshots/tracing.

28

• InspeCtions are evaluation techniques whereby the software requirements, software design,
ot code are examined by a person or group other than the author to detect faults, violations
of development standards, and other problems. An inspection begins with the distribution of
the item to be inspected (e.g., a specification). Each participant is required to analyze the
item on his own. During the inspection, which is a monitored meeting of all the participants,

. the item is jointly analyzed to find as many errors as possible. All errors found are recorded,
but no attempt is made to correct the errors at that time. However, at some point in the
future, it must be verified that the errors found have actually been corrected. Issues:
accuracy; checklists (software requirements, software design, code); effective forerunners
to testing; formal specification evaluation; go-no-go decisions; information flow
consistency; logic errors; loop invariants; manual simulation; retest after change; space
utilization evaluation; technical reviews; status reviews; syntax errors; uninitialized
variables; unused variables.

• Interface analysis is a static analysis technique. It is used to demonstrate that the interfaces
of subprograms do not contain any errors that lead to failures in a particular application of the
software. Interface analysis is especially important if interfaces do not contain assertions that
detect incorrect parameter values. ,It is also important after new configurations of pre-existing
subprograms have been generated. The types of interfaces that are analyzed include external,
internal, hardware/hardware, software/software, software/hardware, and software/database.
Issues: actual andformal parameters mismatch; inconsistencies between subroutine usage
list and called subroutine; inconsistency of attributes of global variables; inconsistency
between COTS parameter usage relative to other system parameters; incorrect assumptions
about static and dynamic storage of values; incorrect functions used or incorrect subroutine
called; input-output description errors.

• Interface testing is a dynatriicanalysis technique. Similar to interface analysis, except test
. cases are built with datathat tests all interfaces. Interface testing'may include the following:
'testing all interface variables at their extreme 'positions; testing interface variables individually
at their extreme values with other' interface variables at normal valu.es; testing all values of the
domain of each interface variable with other interface variables at nQrmal values; testing all
values of all variables in combination (may be feasible only for small interfaces). Issues:
actual andJormal"parameters mismatch; inconsistencies between subroutine usage list and
called subroutine; inconsistency of attributes of global variables; inconsistency between
COTS parameter usage relative to other system parameters; inconsistent interface
parameters; incorrect assu'mptions about static and dynamic storage of values; incorrect
junctions used or incorrect subroutine called; input-output description errors ..

• Mutation analysis determines the thoroughness with which a program has been tested, and
in the process, detects errors. This ,procedure involves producing a large set of versions or
"mutations" of the original program, each derived by altering a single element of the program
(e.g., changing an operator; variable, or constant). Each mutant is then tested with a given
collection of test data· Sets. Since each mutant is essentially different from the original, the
testing should demonstrate that each is in fact different. If each of the outputs produced by
the mutants differ from the output produced by the original program and from each other,

29

then the program:is considered adequately tested and correct. Issues: boundary test cases;
branch and path identification; branch testing; retest after change; test case preparation.

• Performance testing measures how well the software system executes according to its
required response times, CPU usage, and other quantified features in operation. These
measurements may be simple to make (e.g., measuring process time relative to volumes of
input data) or more complicated (e.g., instrumenting the code to measure time per function

. execution). Issues: memory allocation; synchronization; timing.

• Petri-nets model systems to assure software design adequacy for catastrophic-failure and
other safety problems. The system (including software systems) is modeled using conditions
and events represented by state transition diagrams. Petri-nets consist of places (conditions-
represented by circles), transitions (events--represented by bars), inputs (pre-conditions-
represented by arrows originating from places and terminating at transitions), outputs (post
conditions--represented by arrows originating from transitions and terminating at places), and
tokens (indication of true condition--represented by dots). Petri-nets can be "executed" to
see how the software design will actually work under certain conditions. Specifically, Petri
nets can be used to determine all the states (including hazardous states) the system can reach,
given an initial condition. Issues: hazard analysis; modeling; safety; threat analysis; timing.

• Pro of of correctness (formal verification) involves the use of theoretical and mathematical
models to prove the correctness of a program without executing it. Using this method, the
program:is represented by a theorem and:is proved with first-order predicate calculus. Issues:
correctness; proof of critical sections.

• Prototyping helpno examine the probable results of implementing software requirements.
Examination of a prototype may help to identify incomplete or incorrect software
requirements and may also reveal if any software requirements will not result in desired
system behavior. It can be used as an aid in examining the software design architecture in
general or a specific set of functions. For large complicated systems prototyping can prevent
inappropriate software designs from resulting in costly, wasted implementations. Issues:
behavior; omitted functions (from software requirements),' incomplete software requirements
specification; user interface.

• Regression analysis and testing is used to reevaluate software requirements and software
design issues whenever any significant code change is made. It involves retesting to verify
that the modified software still meets its specified requirements. This analysis ensures
awareness of the original system requirements. It is performed when any changes to the
product are made during installation to verify that the basic software requirements and
software design assumptions affecting other areas of the program have not been violated.
Issues:' software integration tests; retest after change; software system tests; unit tests.

• Requirements parsing involves examination to ensure that each· software requirement :is
defined unambiguously by a complete set of attributes (e.g., initiator of an action, source of
the action, the action, the object of the action, constraints). Issues: accuracy; assertion
testing/violations; checklists,' completeness; consistency,' environment interaction,'

30

feasibility; formal specification evaluation; hierarchical interrelationship of units;
information flow consistency; software integration tests; inter-unit structure; path testing;
proof of correctness; software requirements evaluation; software requirements indexing;
software requirements to design correlation; retest after change; standards check,' statement
coverage testing; software system tests; unit tests.

• Reyiews are meetings at which the software requirements, software design, code, or other
products are presented to the user, sponsor, or other interested parties for comment and
approval, often as a prerequisite for concluding a given activity of the software development
process. Reviews check the adequacy of the software requirements and software design
according to a set of criteria and procedures. Issues: effective forerunners to testing; logic
errors; syntax errors.

• Sensitivity analysis is a prediction of the probability that a software testing scheme will make
programmer faults observable during testing. It allows different testing strategies to be
ranked, compared, and evaluated. Sensitivity analysis is useful for assessing which regions
of code are most likely to be affected during software maintenance (code modifications). It
can be twisted into an assessment of how fault-tolerant a program is to software programmer
faults (logic errors). Issues: correctness; logic errors; reliability; test case adequacy.

• Simulation is used to evaluate the interactions of large, complex systems with many hardware,
user, and other interfacing software units. Simulation uses an executable model to examine
the behavior of the software. Simulation is used to test operator procedures and to isolate
installation problems. Issues: assertion testing/violations; behavior; boundary test cases;
branch and path identification; branch testing; environment interaction; execution
monitoring, sampling, support; feasibility; file sequence error; inter-unit structure; path
testing; program execution characteristics; retest after change; statement coverage testing;
system performance prediction; software system tests; un initialized variables,' unused
variables; variable references; variable snapshot/tracing.

Sizing and timing analysis is useful for determining that allocations for hardware and software
are· made appropriately for the software ·design architecture. It is performed during
incremental code development by obtaining program sizing and execution timing values to
determine if the program will satisfy processor size and performance requirements allocated
to the software. Significant deviations between actual and predicted values is a possible
indication of problems or the need for additional examination. Issues: algorithm efficiency;
bottlenecks; boundary test cases,' branch and path identification; branch testing; software
integration tests; processing efficiency; program execution characteristics; retest after
change; space utilization evaluation; software system tests; timing; unit tests.

• Slicing is a program decomposition technique used to trace an output variable back through
the code to identify all code statements relevant to a computation in the program. This
technique may be useful to demonstrate functional diversity. Issues: allocation of V& V
resources; common code,' infonizationJlow consistency; program decomposition; variable
references.

31

• Software failure mode. effects and criticality analysis .reveals weak o[missing software
requirements by using indu~tive reasoning todetennine the .effect on the system of a unit
(includes software instructions) failing in a particular failure·mode. A matrix is developed for
each unit depicting the effect on the system of each unit's failure in each failure mode. Items
in the matrix may include the failure mode and causes, effect on system, criticality,

. change/action required, and prevention and control safeguards. The criticality factor, that is,
the seriousness of the effect of the failure, can be used in detennining where to apply other
analyses and testing resources. Issues: hazard analysis;' safety; incomplete software
requirements specification; threat analysis.

• Software fault tree analysis identifies ·and analyzes software safety requirements. It is used
to detenninepossible causes of known hazards. Its p.urpose is to demonstrate that the
software will not cause a system to reach an unsafe state, and to discover what environmental
conditions would allow the system to reach an unsafe state. The analyst assumes that an
already identified hazard has occurred and then works backward to discover the possible
causes of the hazard. This.is done by creating a fault tree, whose root is the hazard. The
system fault tree is expanded until it contains at its lowest level basic events which cannot be
further analyzed. Issues: hazard analysis; safety; threat analysis ..

• Stress testing tests the response of the system to extreme conditions to identify vulnerable
points within the software, and to show that the system can,withstand nonnal workloads.
Issues: design errors; planning for defaults when system over-stressed.

• Structural testing examines the logic of the units and may be used to .support software
requirements for test coverage, i.e., how much of the program has been' executed. Issues:
bottlenecks; error propagation; evaluation of program paths; parameter checking; program
execution characteristics; retest after change,.

• Symbolic execution. shows the, agreement between the source code and tl1e software
requirements specification. This is an evaluation technique in which program execution is
simulated using symbols rather than actual values for input data, and. program output is
expressed as logical or mathematical expressions involving these symbols. Issues: assertion
testing/violations; progr:am execution characteristics; pra,of of correctness; retest after
change.

• Test certification ensures that reported test results are the actual fmding of the tests. Test
related tools, media, and documentation are certified to ensure maintainability and
repeatability of tests. This technique is also used to show that the delivered software product
is identical to the software product that was subjected to V & V. It is used, particularly in
critical software systems, to verify that the required tests have been executed and that the
delivered software product is identical to the product subjected to software V & V. Issues:
incorrect product version shipped; incorrect test results; reports on te~'t cases that were
omitted.

• Walkthroughs are similar to. reviews, but less fonnal and much more detailed. A walkthrough
is an evaluation technique in which a designer or programmer leads one or more other

32

members ofthe development team through a segment of software design or code, while the
other members ask questions and make comments about technique, style, and identify possible
errors, violations of development standards,. and other problems. Issues: checklists; error
propagation; effective forerunners to testing; formal specification evaluation; go-no-go
decisions; logic errors; manual simulation; parameter checking; retest after change; small,
but difficult, or error-prone sections of design or code; status reviews; syntax errors;
software system tests; technical reviews. '

Reuse-Specific

Most V &Vtechniques are applicable to reused software. Guidance in section 3 provides· s·uggestions
on issues to be considered for deciding to reuse the software; these issues may require application of
V &V techniques. The two techniques identified in this section are cruciaL

• Consistency analysis compares the requirements of any existing software with the new
software requirements to ensure consistency. Issues: consistency.

• Interface analysis (see interface analysis and interface testing above) is especially irrtportant
to exercise interfaces of reused software to other parts of the system as part of the planning
for the reused software, to ensure correctadaption of the reused code to possible differences
in the software architecture, operating environment, and application domain from its original
usage.

KBS-Specific Techniques

• Alternatiye model compares the domain model implemented in the KBS to an alternate
domain model for completeness and accuracy.

• Control groups can be used during testing to compare performance on executing "a given task
with or without the KBS available.

• Credibility analysis comp"ares the results of the system to known expert's answers and
reasoning to the same cases and judges the credibility of the system.

• Field testing is used only for low risk applications. It places the KBS in actual use and
records the r~sults of that use.

• Illegal attribute testing checks rules against constraints for illegal attribute values. This as an
effective" method for eliminating bugs during the implementation process of KBS
development.

• Logical verification is the verification of the expert's knowledge for completeness,
consistency, etc., as the domain model for the knowledge base system is being built.

• " Meta modekcompare the knowledge and rules to dotnainmeta models.

33

• , Partition testing selects test cases using partitions of the input and output space as criteria and
checks if the specification addresses those cases. This as an effective method for eliminating
bugs during the requirements, design, and implementation processes of KBS development.

• Rule verification checks for completeness, subsumed/redundant rules, inconsistent rules, dead
end rules, circular rules, unreachable conclusions, etc.

• Statistical validation examines how frequently a KBS uses rules or clusters of rules int he
knowledge base. If there are expectations about the frequency of use expected for some rules
then statics on rules use can be useful.

• Turing tests compare performance of the system against that of an expert in blind trials.

• Weight analysis compares the statistical information associated with a rule to statics known
about the domain.

34

w

V
I

T
E

C
H

N
IQ

U
E

A
lg

or
it

hm
 A

na
ly

si
s

A
na

ly
ti

c
M

od
el

in
g

B
ac

k-
to

-B
ac

k
T

es
ti

ng

B
ou

nd
ar

y
V

al
ue

 A
na

ly
§i

s

C
od

e
R

ea
di

ng

C
on

tr
ol

 F
lo

w
 A

na
iy

si
s

C
ov

er
ag

e
A

na
ly

si
s

C
ri

ti
ca

l
T

im
in

g/
F

lo
w

 A
na

ly
si

s

D
at

ab
as

e
A

na
l-'

ys
is

D
at

a
F

lo
w

 A
na

ly
si

s

D
ec

is
io

n
(T

ru
th

)
T

ab
le

s

D
es

k
C

he
ck

in
K

E
rr

or
 S

ee
di

ng

E
ve

nt
 T

re
e

A
na

ly
si

s

F
in

it
e

S
ta

te
 M

ac
hi

ne
s

F
un

ct
io

na
l T

es
ti

ng

In
sp

ec
ti

on
s

In
te

rf
ac

e
A

na
ly

si
s

In
te

rf
ac

e
T

es
ti

ng

M
ut

at
io

n
A

na
ly

si
s

P
er

fo
rm

an
ce

 T
es

ti
ng

P
et

ri
-N

et
s

,--
-P

IQ
(K

 o
(C

j)
rr

ec
tn

es
s

R
E

Q

• • • • • • • •
•

•

T
ab

le
 3

-1
.

So
ft

w

-
~

~

-
-
-

-
V

&
V

T
ec

h

.
~
-

-
-

-
-

-.

-
-
-

D
E

S
IG

N

. C
O

D
E

U

N
IT

IN

T
E

G
R

S

Y
S

T
E

M

IN
S

T
A

L
L

O

P
E

R

M
A

IN
T

•
•

•
•

•
•

•
•

•
•

•
•

-
•

•
•

•
•

•
•

/

• •
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

..
• • ~

-

L
-

_
_

_
 ~
-
-
-
-

-
-

~
-

-
-
-
-
-

~

-

W

0
\

.T
E

C
H

N
IQ

U
E

R

E
Q

D

E
S

IG
N

P
ro

to
 ty

pi
ng

•

•
R

eg
re

ss
io

n
A

na
ly

si
s

an
d

T
es

ti
ng

•

•
R

eq
ui

re
m

en
ts

 P
ar

si
ng

•

R
ev

ie
w

s
•

•
S

en
si

ti
vi

ty
 A

na
ly

si
s

S
im

ul
at

io
n

..
•

S
iz

in
g

an
d

T
im

in
g

A
na

ly
si

s
•

S
li

ci
ng

S
F

M
E

C
N

•

•
S

of
tw

ar
e

F
au

lt
 T

re
e

A
na

ly
si

s
•

•
S

tr
es

s
T

es
ti

ng

S
tr

uc
tu

ra
l T

es
ti

ng

S
vm

bo
li

c
E

xe
cu

ti
on

T
es

t C
er

ti
fi

ca
ti

on

. W
al

kt
hr

ou
gh

s
•

•

C
on

si
st

en
cy

 A
na

ly
si

s
•

A
lt

er
na

ti
ve

 M
od

el

•
C

on
tr

ol
 G

ro
up

s

9S
of

tw
ar

e
F

ai
lu

re
 M

od
e,

 E
ff

ec
ts

 a
nd

 C
ri

ti
ca

li
ty

 A
na

ly
si

s

10
0

in
di

ca
te

s
th

at
 it

 is
 a

 w
al

kt
hr

ou
gh

 o
f

th
e

te
st

 c
od

e,

C
O

D
E

U

N
IT

IN

T
E

G
R

S

Y
S

T
E

M

IN
S

T
A

L
L

O

P
E

R

M
A

IN
T

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
• • •

•
•

•
•

•
•

•
•

•
•

0
0

01
0

•
R

eu
se

-S
pe

ci
fi

c
"

K
B

S
-S

pe
ci

fi
c

•

•

V
J

-..
..l

T
E

C
H

N
IQ

U
E

I
C

re
di

bi
li

ty
 A

na
ly

si
s

,F
ie

ld
 T

es
ti

ng

Il
le

ga
l A

tt
ri

bu
te

 T
es

ti
ng

L
og

ic
al

 V
er

if
ic

at
io

n

M
et

a
M

od
el

s

P
ar

ti
ti

on
 T

es
ti

ng

R
ul

e
V

er
if

ic
at

io
n

S
ta

ti
st

ic
al

 V
al

id
at

io
n

, T
ur

in
g

T
es

ts

W
ei

gh
t A

na
ly

si
s

R
E

Q

• • •

.'

D
E

S
IG

N

C
O

D
E

U

N
IT

IN

T
E

G
R

S

Y
S

T
E

M

IN
S

T
A

L
L

O

P
E

R

M
A

IN
T

•
•

•

•

•
•

..
 • • •

4 REUSE

Computer systems have been used by the health care industry for a long time. As medical devices
have increasingly become digital-based systems, software has taken on a larger role. With each
up grade, more software is developed, in addition to the software often reused from the previous
device. Similarly, software in diagnostic systems and patient information systems undergoes upgrades
or is used in new applications.

Most current literature on software reuse lacks discussion of the use of legacy software in new
systems in terms of adapting the software to new considerations. Instead most of the literature
discusses new techniques that can be used to make software reusable, or issues for building
repositories of reusable software components [JOURNAL, TRACZ, FREEMAN, SSR, FRAKES].
Limited information exists to enable determinations about the "fit" of the reusable component with
the new software, and with the relationship of software V &V activities to the reused software as it
is integrated into the new system. Dr. Nancy Leveson has raised issues regarding the reuse of
software in safety-critical systems [LEVESON95, LEVESON93]. Her work emphasizes the need to
consider the entire system, including the software; for example, a fault tree must examine input of the
software when performing a fault tree analysis. She also points out the need to understand
differences between the operating environment of the original software and that of the new
application.

This section on reuse provides general information about software reuse in high integrity systems and
provides some suggested assessments to perform prior to accepting the software for reuse.

4.1 Software Reuse Concerns

The reuse of software in high integrity systems requires considerable planning, study, and application
of software verification and validation (V &V). Failure to consider the operating environment, the
actual machine, and the application of the system which will contain the reusable component can lead
to problems. A prominent and tragic example of the seriousness of the need to exercise careful
discipline in reusing software is the THERAC-25 radiation device, whose failures resulted in deaths
of patients. While many factors contributed to the problems of the THERAC-25, inadequate
consideration of V &V issues for the software reused from a previous version of the THERAC
radiation device was one factor [LEVESON95].

The term "reusable software" may refer to any of the following types of software:

• software developed commercially, often referred to as COTS for commercial off-the-shelf
software; this software may be a word processor, a spreadsheet, a data base program, or any
commercial software that performs a recognized function

• software developed for inclusion in applications (e.g., units or segments of existing
application software); examples include scientific routines and specialized functions

• software owned by an organization that has already been used in a software system developed
by that organization; this software is often referred to as in-house software

39 I Preceding page blank I
~~--. I

• software developed by organization for a specific application that is considered for contract
to another organization for an application it is developing

Some software considered for reuse may not have been subjected to comprehensive software V &V.
Software acquired commercially or existing software that is used on a specific task may have been
developed prior to a disciplined set of requirements being placed on the software development effort.
Even when it has, it must be examined to ensureit fits the operating environment and application
requirements of the new software system.

Acquired and existing software must be evaluated during the process of bringing it into the user
organization since any software unit or program can be critical if it is part of a sequence of operations
accomplishing a critical function or objective. The basis for the evaluation.is the criteria used for
development of the software as if that software had been developed using a disciplined approach.
The software development process is modified to· accommodate existing code. The perspective is
from the software installation activity looking back to the beginning of software development.

Criteria from each activity, of software development need to· be considered as applicable to the
software obtained. A specific set of criteria need to be identified and included as a specification
within ,the procurement documentation or requested prior to acquisition from the source. This
specification is intended to meet the criteria needed to support new software development to the
extent possible. Acceptance verification needs to be performed upon receipt of the software and
products requested to determine. the foundation of further evaluation of the software. Certain
constraints are recognized ,on availability of some documentation. For example, it is important to
trace back to the assumptions and constraints of the original software; if the information doesn't exist,
then the code must be examined to identify them.

4.2· . Assessing Software for Reuse

The reuse of existing software in.a new application requires ascertaining whether the quality of the
software is· sufficient for the intended application and whether the software can beintegrated into the
overall system in.a way that system quality requirements, such as safety or security, are met. In
assessing the suitability of reusable software, the organization must already know the level of
integrity required for the new system; the importance of the following determinations declines as
integrity requirements decline:

• records and documentation from the product development (including software V & V results)
• history of assessment of software development activities
• history of software V &V performed
• history of operational experience

Several issues should be addressed for all reusable software; the reusing organization should ask the
following questions:

•.. Is the reusable software part. of the function thread that directly or indirectly contributes to
the accomplishment of a .critical function or objective? The degree to. which the reusable

40

software affects a critical function or objective can be determined by performing a criticality
analysis (see sec. 3.1). .

• Are the limitations and assumptions of the reusable software consistent with the limitations
and assumptions of the new system?

• Is the available software documentation sufficient for the software V & V tasks to be
performed on the reusable software as part of the system? Decide either to generate the
necessary documentation (in whole or part) to support the V & V of reusable software or not
to use the software in critical applications. '

• Are there any unintended functions (functions built into the reusable item as part of its
originally intended features, or as design assumptions that are. not desired for the intended
application) that will affect the performance and compatibility of the critical system functions
of the operational profile to which the product was originally designed with the operational
profile expected for the system in which the product will be incorporated?

• Is the configuration control process applicable for the new application?·

• What are the mechanisms for error reporting, error correction mechanisms, and upgrade
distribution methodology?

• To what extent are the requirements and architecture·oithe proposed system limited by the
reusable software characteristics?· These may include items such as concurrency, space
utilization, space reclamation [HOOPER].

When the answer to the first question in the above list of issues is afflnnative, that- is, reusable
software is part of the function thread that contributes to accomplishment of a critical function, then
the remaining issues in the list take on greater significance. For example, the original software may
have been written to accommodate assumptions about the operating environment (e.g., flight paths
above sea level instead of below sea leveL data transfer rate of 1200 baud instead of 9600 baud, a 16
bit machine instead of 8 bit machine as in the THERAC-25 case). Leveson addresses some of these
issues [LEVESON95]. Any misuse of system assumptions in the "new" application can cause serious
problems during operation.

When the reusable software is part of the function thread of a critical function, documentation of at
least the interfaces is mandatory. Without the documentation, interface analysis during the software
V &V of the project cannot be properly accomplished because most software V &V tasks rely heavily
on information about software requirements, software design, testing, and other project data found
in documentation.

When the reusable software was subjected to a prior software V&V effort, the prior software V&V
results may serve as a basis for understanding the performance and limitations of the reusable
software relative to the functions of the new system application. If no prior software V &V was
performed on the reusable software, then software V &V should be conducted consistent with the
software criticality level determIned for the entire system application. .

41

A comprehensive review of the reusable software should address issues concerning the. reused
software relative to the new system through:

• determination and identification of the functions to be performed;

• determination of the software integrity level;

• performance of a risk assessment to determine if the use of the previously developed or
purchased software will result in undertaking an acceptable level of risk even if unforeseen
hazards result in a failure;

• identification of all interfaces between the new software item and the previously developed
or purchased software;

• . identification of the capabilities and limitations of the previously developed or acquired
software with respect to the project's requirements; and,

• following an approved test plan, testing of the high integrity features of the previously
developed or purchased software with the project's software.

The comprehensive review should then assess the quality of the reused software through:

• determination of whether the software item has met quality assurance requirements consistent
with the system quality requirements;

• determination of the conformance of the previously developed or acquired software to
pu blished specifications;

• assessment ofthe quality requirements applied to the software during its development;

• determination of the configuration controls applied to the software item;

• assessment of relevant operational experience and historical error reports with the software
and maintenance actions applied to the software; .

• identification of relevant documents and their status (e.g., product specifications, software
design documents, usage documents) that are available to the obtaining organization; and,

• following an approved test plan, testing of the high integrity features of the previously
developed or acquired software independent of the project's software.

Software should not be reused in high integrity systems if the reused software:

• cannot be adequately tested;
• presents significant risk of hazardous failure;

42

• becomes unsafe or insecure in the context of its planned use; and/or,
• represents significant adverse consequence in the event of failure.

The inability to determine the level of risk present or the consequence of failure is justification for
rejecting the use of the previously developed or acquired software. Equivalent analyses, tests, and
demonstrations by the vendor of the adequacy of the vendor-supplied software.for use in a high
integrity application may be accepted as satisfying the intent of the assessment activities listed above.
Previously developed or purchased software that is obtained as source code and modified for use by
the project is subject to the same software V &V as are applied to new software.

The specific software V &V tasks performed, and the rigor and extent to which they are applied, will
depend on the risks created through the use of the reusable software and the software integrity level
of the intended system. Therefore, criticality analyses should be conducted on how the reusable
software affects the system.

43

5 KNOWLEDGE-BASED SYSTEMS (KBS)

There has been a continuing interest from the health care community in the use of artificial intelligence
(AI) techniques to manage the knowledge needed to encode expertise in the medical domain and
make that expertise more broadly available. The AI community has also been interested in applying
AI techniques to the complexity 9f medical domain (e.g., [KOHUT, ANDREASSEN].) The health
care community has continuing problems of quickly and reliably getting expertise to those who need
it and of updating that expertise in a rapidly changing field. Health care is a knowledge intensive field
with rapidly expanding and evolving knowledge about diagnosis and treatment. The ability to quickly
locate those information resources that have the highest probability of applying to a given problem
is important to managing this health care information explosion. This knowledge management
problem is often a problem of gaining access to needed expertise in a sub-field. One proposed
approach is the use of knowledge-based systems (KBS).

The term "knowledge-based system" refers to systems which use or manipulate complex data or
knowledge structures using AI techniques. The goal ofthese systems is to apply specialized expertise
to solving problems. KBSs typically incorporate a domain model and apply that model to new
problems. The purpose of incorporating a KBS into a larger system is to improve the performance
of the overall system for unanticipated situations (e.g., its robustness).

KBS subsumes the older term "expert system" which typically refers to systems that encode an
expert's knowledge as rules and apply those rules to solve problems. While many KBSs employ rules,
the AI community has developed a variety of reasoning paradigms including case-based reasoning and
the use of neural networks. Rules remain a popular, useful, well-understood approach to encoding
an linportant subset of domain expertise. This subset is sometimes called a domain experts decision
heuristics or "rules of thumb."

5.1 KBS and Agents

One type of KBS gaining attention is "agents" or "intelligent agents" (lAs). Agents are closely
related to expert systems. There are at least two approaches to defining agents; [FONER] provides
the following list of attributes of an agent:

• autonomous behavior (e.g., periodic action, spontaneous execution, initiative)
• personalizability to better execute the selected tasks
• discourse or two-way communication with the agent
• risk and trust associated with delegating tasks
• domain should have low criticality
• graceful degradation at the domain boundary
• cooperation between user and agent
• anthropomorphism
• meet expectations enough of the time to be useful

While [FONER] provides counter examples of agents which are missing some of these attributes,
[FONER] stresses that agent technology is not well enough understood to be useful for critical
domains. [FONER] focuses on the use of agents in game playing and other areas of social interaction.

45 i Preceding page blank I

[PAN] discusses the use of lAs as assistants for enterprise integration. For [PAN] "Each IA supports
a clearly discernible task or job function, automating what it can and calling the services of other lAs,
as well as human agents, when necessary." In this model, agents, both those associated with job
functions and personal assistants associated with human agents, help integrate an enterprise through
communication and information retrieval and synthesis. This model of IAs evolved from expert
systems designed to better manage or integrate tasks on the factory floor. To cope with the changing
demands on the factory floor, these expert systems had to be user extensible. In Pan and
Tennenbaum's model, this user extensibility evolved into the cooperative interaction associated with
lAs. These two points of departure for developing agents, factory floor controllers and social
discourse, provide different criteria for evaluating agent usefulness and appropriateness for high risk
tasks.

5.2 Differences and Similarities between KBSs and Other Systems

There are critical differences between KBSs and traditional systems cited in the literature affecting
verification and validation (V &V)of KBSs:

• A KBS is both a piece of software and a domain model [OKEEFE].

• There may not be a unique correct answer to a problem given to a KBS [DAVENPORT].

• A KBS can adapt by modifying its behavior based on changes in its internal representation of
the environment [HOLLNAGEL].

These differences provide the flexibility and special capabilities of a KBS, but these differences make
use of traditional V &V methods for KBSs difficult and require the introduction of new techniques
[OKEEFE, PREECE, DAVENPORT, NUREG63l6].

The key component of a KBS that distinguishes it from other types of software is its encoding of the
domain model in a knowledge base. Elicitation, formulation, and encoding of this model are major
steps of KBS development. It is the knowledge base component that requires special emphasis during
V&V. V&V of components other than the knowledge base (e.g., the inference engine, user interface)
can rely on the same techniques as conventional systems [OKEEFE, NUREG6316]. With available
expert system shells and tools, a new KBS may be able to-reuse existing versions of these system
components; however, reuse introduces new concerns for V &V as discussed in section 4 of this
report.

V&V of the knowledge base requires understanding how the KBS will use the knowledge base and
how the KBS itself will be used. All the uses of the knowledge base and the KBS containing it may
not be known at development time. A KBS may operate in a domain with unclear boundaries, without
complete information and with no unique correct answer to a given problem [DAVENPORT].
Complete enumeration of possible problems requiring the use of the model is unlikely. It is hard to
predict what the range of problems are that any given model might apply to, or the enumeration of
those problems might be prohibitively expensive. If the model is simple enough that experts could
enumerate all of the possible problems that could be submitted to the KBS and all of the outcomes
easily, a KBS would probably not be the best approach. One argument for using a KBS is that it can

46

improve the "robustness" of a system by supporting problem-solving under conditions that were not
specifiable in advance. This can be through adaption of the knowledge base from automatic
knowledge acquisition [HOLLNAGEL].

Another area important to KBS usage and related to validation of the model is "establishing
credibility" [BAHILL] with KBS users. Even if the domain model is complete and accurate, a KBS
user can loose confidence in the KBS if it appears to be using an obviously incorrect chain of
reasoning. The user may see this when the KBSis attempting to validate a chain of reasoning by
asking for additional information that the user feels is unnecessary or inappropriate. Under these
conditions, the user can lose confidence in the KBS. Inappropriate questions can result from a failure
to propagate knowledge generated from previous questions and asking redundant questions as the
KBS tests new inference chains. Another source of inappropriate questions is incomplete specification
of inference rules, resulting in the KBS asking questions that should be "obvious." The classic
example for medical diagnosis systems, is the KBS asking if a male patient is pregnant. Obvious
lapses of this type cause users to loose confidence iIi the system. [BAHILL]

5.3 KBS Development

While there is no single "standard life cycle" or development technique for KBSs, typical discussions . .
of KBS development assume some form of rapid prototyping, evolutionary prototyping, or
incremental development process. The assumptions underlying this choice are that experts and users
cannot articulate expertise systematically and completely in one iteration and that extensive tool
support supplies parts of the system other than the knowledge base contents.

There are many expert system shells and products supporting the rapid encoding of knowledge using
particular styles of reasoning. While these shells and tools are helpful, they can also be deceptive since
prototypes developed using these tools may not scale up or may require substantial further effort to
become useable systems. Even with tools, the knowledge engineer must still work with the expert to
formulate the expert's knowledge suitable for the expert system. There'is no single set of rules for
organizing this knowledge.

5.3.1 KBS Analysis and Design Support

KBS Analysis and Design Support (KADS) is one approach to structuring the analysis and design
activities ofKBS development. The goal of the KADS developers is to extend the ideas of structured
programming to KBS development [TANSLEY]. KADS consists of the following:

• requirements analysis and design activities
• definitions of deliverables for those activities
• advice and guidance on the techniques used to perform those activities
• advice and guidance on tool and a library selection
• support for quality assessment and control
• identified opportunities for proto typing [T ANSLEY]

47

KADSemphasizes the development of modelS through th~ reqtrirementsanalysis and design activities.
Table 5-1 lists. the activities, II tasks, and products of the KADS development process.

- . " " Table 5 1 KADS Activities Tasks and Products

Activity Task Models/Products

. Requirements Analysis Process Analysis Process Model

. Cooperation Analysis Cooperation Model

Expertise Analysis Expertise Model
..

Constraints Analysis Constraints Document

System Overview System Overview Document

Design Global Design Global System Architecture

KBSDesign KBS Functional Design
kBS BciIavioral Design
KBS Physical Design

There is some evidence thai a modeling approach to eliciting and recording expert knowledge makes
the knowledge easier to represent and verify in the KBS~ Domain experts develop models of how
their domain works within the constraints they are accustomed to working with. For example, an auto
mechanic has a model of how an engine works and a model of the physics employed in that engine,
but not a general model of physics. Because domain experts find modeling approaches more natural,
modeling may allow experts to fOlIDally verify the elicited model. [DAVENPORT]
. , " ' .

5.3.2' KBS Development Process

. , . ~

The ''Framework for the Development and Assurance of High Integrity Software" [NIST223] defines
genenc software development activities andthe tasks related to software V &V that might be part of
those activities. Typical KBS development is heavily tool supported using commercial tools and
expert system shells and uses a spiralmcremental development model. The inability to completely
specify expertise in any given domain in one pass makes the waterfall model less useful; however, all
development activities are still necessary. Table 5_212 maps a generic KBS development process to
the framework;s activIties. . . , . .

11This document adopts the terminology, usedin[IS012207.]; i.e., a "process" is made up of "activities" which
contain "tasks." For example, the software development proc'ess includes a software requirements activity and the software
V &V process includes, among others, the software requirememts V &V activity which contains, among others, a task called
software requirements evaluation.' ([NIST223] only used the terms ''process'' and "activity," e.g., software requrrements
V &V process contains the activity called software requirements evaluation.) IS012207 terminology is reflected in Table
5"1.

12 IS012207 terminology is reflected in Table 5-2 (see footnote 10).

48

a e - eve opmen rocess appm~ -. '. . T bl 52 D tP M

KBS Generic Development Activitt CorresJlondin~ Conventional Activity .. ,
"

-Tool and shell selection Early Softwil!e Requirements Activity .'
-Inference engine selection/development

. . '. ~ .-
• j', . -

Iterate the following until KBS reaches acceptable state: .

Knowledge Acquisition Activity _ Software Requirements Activity

.. Domain Modeling~ngineering Activity' Software Requirements/Software Design Activity

Design Activity " Software DesignA~tivity ; - .

Knowledge Base Formulation Activity·· Code Activity

Integration Activity Software I~tegr'ation Activity' -
,

..
[Reimplement in conventional language-especially

. . '
. [Software Requireme.nts-Software Design-Coding

common for real time systems] Activity] .'
Integration Activity Software Integration Activity

,
Softwar~ Installation Activity Installation Activity

..
Knowledge Maintenance Activity' Software Operation and Maintenance Activity

5.4 Issues for Real Time' KBS .

Real time constraints introduce another concern for KBS V &YThere has been some interest in using
KBSs for extracting information from sensors and other data sources and using that data for solving
control and scheduling problems in real time [DAZ] . While there has-bee~ some work in extracting
information from large data sources, there has been very little work on the V &V of performance
constraints associated with real time systems [DAZ]. V & V of performance constraints requires
predicting the performance of various KBS reasoning techniques.. The ability to maIce those
predictions is at besi very difficult, [DAZ] summarizes the problem as "the less procedural the process
path, as in typical AI approac:hes, the more difficult it becomes to predetermine the flow of control
and to guarantee a response time." [DAZ]

~ , >.

Another problem for KBS performance is the apparent paradox that the more information available,
the longer it can take to obtain a result from the system [DAVENPORT]. Each addition of a special
case to a rule, or addition of a fact to a knowledge base, is one more item to be checked. For
example, a diagnostic rule that specifies "if a light is not working, replace the light bulb" takes less
time to test than one that specifies "if a light is not working and the power is on, replace the light
bulb." Of course, additional clauses could be added (e.g., the light switch is on, the fixture is
working) to this simple example before deciding that the probability of the light being burned out
justified the cost of replacing the bulb. For a real-world, medical diagnosis example, there could be
a much larger number of conditions to check before reaching a similar point. Unless the encoded
domain model propagates knowledge as it applies inference rules, the KBS may repeatedly ask the
user for the same infonnation. This repetition may seriously impede performance; however, the time
required to perform the extra inferences needed to propagate the information can also impede
performance. [DAVENPORT]

49

5.5 Reuse and KBS

KBSs often make extensive reuse of components outside the knowledge base. Small to medium size
KBSs are frequently built using expert system shells which supply the inference engine and user
interface. While these shells permit rapid prototyping, the resulting system may not be appropriate
for general use.

In selecting an expert system or iIi transferring a knowledge base from one KBS to another, it is
important to consider the assumptions embedded in the inference engine that affect the construction
and execution of the knowledge base. Some examples of assumptions that would affect KBS
performance include the following:

• the execution order for the rules
• the ability to attach statistical information
• the representation and capability to manipulate statistical information
• the continued search for acceptable solutions after finding an initial solution

Changes in these assumptions could require reencoding the rules of other parts of the domain model
for the new inference engine.

Assumptions about the inference engine are one consideration when reusing the domain model. There
are other issues if the developer intends to combine the domain model with other domain models.
Domain models incorporate many assumptions about the surrounding context for using the model and
the "borders" of the model. It is important to consider these context assumptions when reusing a
domain model. The domain model may also incorporate assumptions about capabilities of the
inference engine used to execute the encoding of the model.

50

6 REFERENCES

[AIAA]
R-013-1992, "Recommended Practice for Software Reliability," American Institute of
Aeronautics and Astronautics, Space-Based Observation Systems Committee on Standards,
Software Reliability Working Group, 1992. .

[AIRFORCE]
AFSCP 800-14, Air Force Systems Command, Software Quality Indicators, "Management
Quality Insight," U.S. Department" of the Air Force, January 20, 1987.

[ALBRECHT]
Albrecht, Allan J. and John E. Gaffney, Jr., "Software Function, Source Lines of Code, and
Development Effort Prediction: A Software Science Validation," IEEE Transactions on
Software Engineering, Vol. SE-9, No.6, November 1983.

[ANDREASSEN]
Andreassen, S., R Engelbrecht, and J. Wyatt, Artificial Intelligence in Medicine, lOS Press,
Washington, 1993.

[BAHILL] ,
Bahill, A. Terry, Verifying and Validating Personal Computer-Based Expert Systems .

. Prentice Hall, New Jersey, 1991.

[BASIL!]
Basili, YR, and RW. Selby, "Comparing the Effectiveness of Software Testing Strategies,"
IEEE Transactions on Software Engineering, Vol. 13, No. 12, December 1987.

[BElZER]

[BEN]

Beizer, Boris, Software Testing Techniques, Van Nostrand Reinhold, New York, 1990.

Ben-Ahmeida, M., L.J. Kohout, and W. Bandler, "The Use of Fu'zzy Relational Products in
Comparison and Verification of Correctness of Knowledge Structures," Knowledge-Based
Systems for Multiple Enyironments, ed. by L.J. Kohout, J. Anderson, and W. Bandler,
Ashgate, 1992.

[BOEHM]
Boehm, B.W., and P.N. Papaccio, "Understanding and Controlling Software Costs," IEEE
Transactions on Software Engineering, The Institute for Electrical and Electronics Engineers,
Inc., New York, NY, October 1988.

[BROCKLEHURST]
Brocklehurst, S., P. Y. Chan, Bev Littlewood, and John Snell, "Recalibrating Software
Reliability Models," IEEE Transactions on Software Engineering, Vol. 16, No.4, 1990.

51

[BUTLER]
Butler, R. and G. Finelli, "The Infeasibility of Experimental Quantified Life-Critical Software
Reliability," Proceedings of SIGSOFT'91: Software for Critical Systems, Association for
Computing Machinery, December 1991.

[CAPRIO]
Caprio, William H., "The Tools for Quality," Total Quality Management Conference, Ft.
Belvoir, Virginia, July 13-15, 1992.

[CONNOLLY]
Connolly, Brian, "A Process for Preventing Software Hazards," Hewlett-Packard Journal,
June 1993.

[DACS]
"Software Reliability Models," DACS Newsletter, Data & Analysis Center for Software,
Volume X, Number 2, Summer, 1992.

[DAVENPORT]

[DAZ]

Davenport, David, "Intelligent Systems: The Weakest Link?" Intelligent Systems: Safety,
Reliability and Maintainability Issues, ed. by Okyay Kaynak, Ger Honderd and Edward
Grant, New York: Springer-Verlag, 1992.

D'az-Herrara, Jorge L, "Implications of Artificial Intelligence for Embedded Systems,"
Proceedings of the Software Technology Conference, Software Technology Support Center,
1995.

[DEMMY]
Demmy, W. Steven and Arthur B. Petrini, "Statistical Process Control in Software Quality
Assurance," Proceedings of the 1989 National Aerospace and Electronics Conference,
NAECON, May 22-26,1989, Dayton, OH, IEEE, Inc.

[DUNN]
Dunn, Robert, Software Defect Remoyal, McGraw-Hill, Inc., 1984.

[EWICS3]
Bishop, P. G .. (ed.), Dependability of Critical Computer Systems 3 - Techniques Directory,
The European Workshop on Industrial Computer Systems Technical Committee 7 (EWICS
TC7), Elsevier Science Publishers Ltd, 1990.

[FIPS101]
FIPS PUB 101, "Guideline for Lifecyc1e Validation, Verification, and Testing of Computer
Software," U.S. Department ofCommercelNational Bureau of Standards (U.S.), 1983 June 6.

[FIPS106]
FIPS PUB 106, "Guideline on Software Maintenance," U.S. Department of
CommercelNational Bureau of Standards (U.S.), 1984 June 15.

52

[FIPS132]
FIPS PUB 132, "Guideline for Software Verification and Validation Plans," US~ Department·
of CommercelNational Bureau of Standards (U.S.), 1987 November 19.

[FONER]
Foner, Leonard N., "What's An Agent, Anyway? A Sociological Case Study," Agents Group,
MIT Media Lab,Agents Memo 93-01, 1993. . .

[FRAKES]
Frakes, William B. and Christopher 1. Fox, "Sixteen Questions about Software Reuse,"
Communications of the ACM, Vol. 38, No.6, June 1995.

[FREEMAN]
Freeman, Peter, Tutorial: Software Reusability, IEEE Computer Society Press, Washington,

. D.C.,1987.

[FREEDMAN]
Freedman, David, Robert Pisani, and Roger Purves, Statistics, W.W. Norton & Company,
Inc., New York, 1978.

[HOLLNAGEL]
Hollnagel, E., "The Intelligent Use of Intelligent Systems," Intelligent Systems: Safety.
Reliability and Maintainability Issues, ed. byOkyay KaYnak, Ger Honderd and Edward Grant,
Springer-Verlag; New York, 1992.

[HOOPER]
Hooper, James W. and Rowena O. Chester, Software Reuse Guidelines and Methods, Plenum
Press, 199L .

. [IEEE730]
ANSIlIEEE Std 730-1984, "Standard for Software Quality Assurance Plans," The Institute
of Electrical and Electronics Engineers, Inc., 1984.

[IEEE982]
ANSIlIEEE Std 982.2-1988, "Guide for the Use of IEEE Standard Dictionary of Measures
to Produce Reliable Software," The Institute of Electrical and Electrorllcs Engineers, Inc.,
June 1989.

[IEEE 10 12]
ANSIlIEEE Std 1012-1986, "IEEE Standard for Software Verification and Validation Plans,"
The Institute of Electrical and Electronics Engineers, Inc., February 10, 1987.

[IEEE 1058]
. ANSI! IEEE Std 1058-1987, Standard for Software Proj~ct Management;" The Institute of

Electrical and Electronics Engineers, Inc., 1987:

53

[IEEE7432]
ANSIlIEEE Std 7432-1993, "Standard Criteria for Digital Computers in Safety Systems of
Nuclear Power Generating Stations," The Institute of Electrical and Electronics Engineers,
Inc., 1993.

[IEEEPI059]
IEEE Std PI059-1994, "(DRAFT 7.1) IEEE Guide for Software Verification and Validation
Plans," Institute of Electrical and Electronics Engineers, Inc., May 24,1993.

[ISOI2207]
ISO/IEC 12207, "Information Technology-Software Life Cycle Processes," International
Standards Organization/International Electrotechnical Commission, 22 February 1995.

[JOURNAL]
Journal of Systems and Software, Volume 30, Number 3, September, 1995.

[JURAN]
Juran, 1. M. (ed.), Juran's Quality Control Handbook, 4th ed., McGraw-Hill, Inc., New York,
1988.

[KIRANI]
Kirani, Shekhar, LA Zualkernan, and W.T. Tsai, "Comparative Evaluation of Expert System
Testing Methods," Proceedings of the 1992 IEEE Int. Conference on Tools withAL, IEEE
Computer Society, 1992.

[KITCHEN HAM]
Kit chenh am , B. A. and B. Littlewood, Measurement for Software Control and Assurance,
Elsevier Science Publishers Ltd, London and New York, 1989.

[KOHUT]
Kohout, LJ., J. Anderson and W. Bandler, Knowledge-Based Systems for Multiple
Enyironments, Ashgate Publishing Co., Brookfield, VT, 1992.

[LEVESON93]
Leveson, Nancy G and Clark S. Turner, "An investigation of the Therac-25 accidents," IEEE
Computer, 26(7):18-41, July' 1993.

[LEVESON95]
Leveson, Nancy G., Safeware:System Safety and Computers, Addison Wesley Publishing
Company, 1995. .

[LYLE]
Lyle, Jim, "Program Slicing," to be published in Encyclopedia of Software Engineering, John
Wiley Publishing Co., New York, New York.

54

[LYU]
Lyu, Michael and Allen Nikora, "Applying Reliability Models More Effectively"," IEEE
Software, Vol. 9., No.4, July 1992.

[MUSA87]
Musa, J.D., A. Iannino, and K. Okumoto, Software Reliability. Measurement. Prediction.
Application, McGraw-Hill, New York, 1987.

[MUSA89]
Musa, J.D., and AF. Ackerman, "Quantifying Software Validation: When to Stop Testing?"
IEEE Software, May 1989.

[MYERS]
Myers, Glenford J., The Art of Software Testing, John Wiley & Sons, New York, 1979.

[NBS93]
NBS Special Publication 500-93, "Software Validation, Verification, and Testing Technique
and Tool Reference Guide," U.S. Department of Commerce/National Bureau of Standards
(U.S.), September 1982.

[NGUYEN]
Nguyen, T.A., W.A. Perkins, TJ. Laffey, and D. Pecora, "Knowledge Base Verification,"AI
Magazine, Summer 1987.

[NIST165]
NIST Special Publication 500-165, "Software Verification and Validation: Its Role in
Computer Assurance and Its Relationship with Software Project Management Standards,"
U.S. Department of Commerce/NationaUnstitute of Standards and Technology, September
1989.

[NIST190]
NIST Special Publication 500-190, "Proceedings of the Workshop on High Integrity
Software; Gaithersburg, MD; Jan. 22-23, 1991," U.S. Department of CommercelNational
Institute of Standards and Technology, August 1991.

[NIST204]
NIST Special Publication 500-204, "High Integrity Software Standards and Guidelines," U.S.
Department ofCommercelNational Institute of Standards and Technology, September 1992.

[NIST209]
NIST Special Publication 500-209, "Software Error Analysis," U.S. Department of
CommercelNational Institute of Standards and Technology, April 1993.

55

[NIST223]
NIST Special Publication 500-223, "A Framework for the Development and Assurance of
High Integrity Software," U.S. Department of Comri1ercelNational Institute .of Standards and
Technology, December 1994.

[NIST4909]
NISTIR 4909, "Software Quality Assurance: Documentation and Reviews," U.S. Department
of CommercelNational Institute of Standards and Technology, September 1992.

[NIST5459] "
NISTIR 5459, "Quality Characteristics and Metrics for Reusable Software (Preliminary
Report)," U.S. Department of Commerce/National Institute of Standards and Technology,
May 1994.

[NIST5589]
NISTIR 5589, "A Study on Hazard Analysis in High Integrity Software Standards and
Guidelines," U.S. Department ofCornmercelNational Institute of Standards and Technology,
January 1995.

[NUREG6316] .
NUREG/CR-6316 (Volume 2), "Guidelines for the Verification and Validation of Expert
System Software and Conventional Software (Survey and Assessment of Conventional
Software Verification and Validation Methods)," U.S. Nuclear Regulatory Commission,
March 1995.

[OKEEFE]
O'Keefe, Robert M. and Daniel E. O'Leary, "Expert System Verification and Validation,"
Artificial Intelligence Review: An International Survey and Tutorial Journal, Vol. 7, No.1,
February 1993.

[OLEARY]
O'Leary, D.E. and N. Kandelin, ''Validating the Rille Weights in Rule-Based Expert
Systems," Inter.nationalJournal oJExpert Systems, Vol. 1,. No.3; 1988.

[OPMC]

[PAN]

The Organizational Process· Management CyclePrograrnmed Workbook, Interaction
Research Institute, Inc., Fairfax, Virginia.

Pan, Jeff Y.c. and Ja M. Tennenbaum; "An Intelligent Agent Framework for Enterprise
Integration," IEEE Transactions on Systems, Man and Cybernetics, Vol. 21, No.6,
Nov.lDec., 1991.

[PREECE] . " ' ", "
Preece, Alun D. and Rajjan Shinghal, ''Verifying and Testing Expert System Conceptual
Models," IEEE International Conference on Systems, Man and Cybernetics, Vol. 1.

56

[RADATZ]
Radatz, J.W., "Analysis of IV&V Data," RADC-TR-81-145, -Logicon, Inc., Rome Air
Development Center; Griffiss AFB, NY, June 1981.

[ROOK]
Rook, Paul, Software Reliability Handbook, Elsevier Science Publishers Ltd, London and
New York, 1990.

[RTCAI78B]
RTCAlDO-178B, "Software Considerations in Airborne Systems and Equipment
Certification," RTCA, Inc., December 16, 1992.

[SMITH]

[SQE]

[SSR]

Smith, Gary, Statistical Reasoning, Allyn and Bacon, Boston, MA, 1991.

"Software Measurement," Seminar Notebook, Version 1.2, Software QUality Engineering,
1991.

. "

''Proceedings of the Symposium on Software Reusability: SSR '95," Software Engineering
N.ore.s., ACM SIGSOFf, August 1995.

[TANS LEY]
Tansley, D.S.W. and C.c. Hayball, Knowledge Based Systems Analysis and Design' A KAPS
Deyelopers Handbook, Prentice Hall, New York, 1993.

[TRACZ]
Tracz, Will, Tutorial' Software Reuse: Emerging Technology. IEEE Computer Society Press,
Los Alamitos, CA, 1990.

[TURING]
Turing, AM., "Computing Machinery and Intelligence," Mind, Vo1.59, 1950.

[VOAS91]
Voas, J., L. Morell, and K Miller, "Predicting Where Faults Can Hide From Testing," IEEE
Software, March 1991.

[VOAS92]
. Voas, J., "PIE: A Dynamic Failure-Based Technique," IEEE Transactions on Software

Engineering, August; 1992.

[VOAS95]
Voas, J. and K. Miller, "Software Testability: The New Verification," IEEE Software,May
1995. . ---

57

[W ALLACE91]
Wallace, D.R., D.R. Kuhn, and J.e. Chemiavsky, "Report on a Workshop on the Assurance
of High Integrity Software," Proceedings of the Sixth Annual Conference on Computer
Assurance (COMPASS (91), NIST, Gaithersburg, MD, June 24-27,1991, The Institute of
Electrical and Electronics Engineers, ·Inc., 1991.

[W ALLACE94]
Wallace, Dolores R., "Verification and Validation," Encyclopedia of Software Engineering,
Volume 2, John Wiley & Sons, Inc., 1994.

[WILEY]
Encyclopedia of Software Engineering, John Wiley & Sons, Inc., 1994.

[WING]
Wing, Jeannette M., "A Specifier's Introduction to Formal Methods," COMPUTER,
September 1990.

[ZAGE]
Zage, Wayne M., "Code Metrics and Design Metrics; An ACM Professional Development
Seminar," November 19, 1991.

58

APPENDIX A. SOFTWARE V &V MEASUREMENT

This appendix, condensed from [NIST209], identifies metrics related to software error detection,
statistical process control (SPC) techniques, and several software reliability estimation models.
Metrics are used to assess the product or process. SPC techniques are used to monitor a project by
observing trends, and help to locate major problems in the software development process, the
assurance processes (e.g., software quality assurance, software verification and validation (V&V))
and the product itself. Software reliability estimation models provide information about the predicted
perfonnance of the software .

. Error data from the V &V activities can be collected over the entire project and stored in an
organizational database, for use with the current project or future projects. An organizational
database may also play an important role in software reuse within an organization. In deciding
whether or not to reuse a particular software unit, one can examine its error history to detennine
whether it satisfies the level of assurance required by the intended application. One can evaluate the
component by observing its past failure rates and fault densities to ensure that the component is
appropriate for reuse. A software component may sometimes be reused to build a system which is
of a higher level of assurance than that in which the component was originally used. The database
would provide data on the reliability or other quality attributes to help detennine how much additional
work is needed to increase the quality of the componentto the desired level.

A.I Metrics

In this report, a metric is defmed to be the mathematical definition, algorithm, or function used to
obtain a quantitative assessment of a product or process. The actual numerical value produced by
a metric is a measure. Thus, for example, cyclomatic complexity is a metric, but the value of this
metric is the cyclomatic complexity measure.

Two general classes of metrics include the following:

• management metrics, which assist in the management of the software development process
• quality metrics, which are predictors or indicators of the product qualities

Management metrics can be used for controlling any industrial production or manufacturing activity.
They are used to assess resources, cost, and task completion. Quality metrics are used to estimate
characteristics or qualities of a software product. Some metrics may be both management metrics
and quality metrics, i.e., they can be used for both project control and quality assessment.

A disadvantage of some metrics is that they do not have an interpretation scale which allows for
consistent interpretation, as with measuring temperature (in degrees Celsius) or length (in meters).
This is particularly true ofmetrics for software quality characteristics (e.g., maintalnability, reliability,
usability). Measures must be interpreted relatively, through comparison with plans and expectations,
comparison with similar past projects, or comparison with similar components within the current
project. While some metrics are mathematically-based, most, including reliability models, have not
been proven.

59

Since there is virtually an infinite number of possible metrics, users must have some criteria for
choosing which metrics to apply to their particular projects. Ideally, a metric should possess all of
the following characteristics:

• simple - definition and use of the metric is simple

• objective - different people will give identical values; allows for consistency, and prevents
individual bias

• easily collected - the cost and effort to obtain the measure is reasonable

• robust - metric is insensitive to irrelevant changes; allows for usefulcomparison

• valid - metric measures what it is supposed to; this promotes trustworthiness of the measure

A.I.1 General'Metrics

Primitive metrics such as those listed below can be collected throughout software development.
These metrics can be plotted using bar graphs, histograms, and Pareto charts as part of SPC. The
plots can be analyzed by managerrient to identify the activities that are most error prone, to suggest
steps to prevent the recurrence of similar errors, to suggest procedures for earlier detection of faults,
and to make general improvements to the software development process.

Primitive problem metrics
- Number of problem reports per activity, priority, category, or cause
- Number of reported problems per time period -
- Number of open real problems per time period
- Number of closed real problems per time period
- Number of unevaluated problem reports
- Age of open real problem reports
- Age of unevaluated problem reports
- Age of real closed problem reports
- Time when errors are discovered
- Rate of error discovery

Primitive cost and effort metrics
- Time spent
- Elapsed time
- Staff hours
- Staff months
- Staff years

Primitive change metrics
- Number of revisions, additions, deletions, or modifications
- Number of reque'sts to change the software requirements: specification and/or software design

60

Primitive fault metrics
- Number of unresolved faults at planned end of activity
- Number of faults that have not been corrected, and number of outstanding change requests
- Number of software requirements and design faults d~tected during reviews and walkthroughs

A.l.2 Software Requirements Metrics

The main reasons to measure software requirements,speci,fications is to provide early warnings of
quality problems, to enable more accurate project predictions, and to help improve the specifications,

Primitive size metrics: These metrics involve a simple count. Large components are assumed to have
a larger number of residual errors, and are more difficult to understand than ,smail components; as a
result, their reliability and extendibility may be affected.
- Number of pages or words
- Number of requirements
- Number of functions

Requirements traceability (RT)." This metric is used to assess the degree of traceability by measuring
the percentage of requirements, that has been implem~nted in the software design. It is also used to
identify requirements that are either missing from, or in addition to the. original requirements. The
measure is computed using the equation: RT =, RIIR2 x 100%, where Rl is the number of
requirements met by the architecture ,(software design), and R2 is the number of original
requirements. [IEEE982]

Completeness (CM). This metric is used to determine the completeness of the software specification
during requirements activity. This metric uses 18 primitives (e.g., number of functions not
satisfactorily defined, number of functions, number of defined functions, number of defined functions
not used, number of referenced functions, and number of decision points). It then uses 10 derivatives
(e.g., functions satisfactorily defined, data references having an origin, defined functions used,
reference functions defined), which are derived from the primitives. The metric is the weighted sum
of the 10 derivatives expressed as CM = L wPi,:where the summation is fromi=l to i=lO, each
weight Wi has a value between 0 and 1, the sum of the weights is 1, and each Di is a derivative with
a value between land O. The values of the primitives also can be,used to identify problem areas
within the software requirem~nts specification. [IEEE982]

Fault-days number (ED). This metric specifies the number of days that faults spend in the. software
product from its creation to their removal. This measure uses two primitives: the activity, date, or
time that the fault was introduced, and the activity, date, or time that the fault was removed. The
fault days for the ith fault, (FDJ, is the number of days from the creation of the fault to its removal.
The measure is calculated as follows: FD = L FDi. This measure is an indicator of the quality of the
software design and software developme~t process. A high value may be ,indicative of untimely
removal of faults and/or existence of many faUlts, due to an ineffective software development process.
[IEEE982]

Function points. This measure was Qriginated by Allan AlbrechtatIBM inth,e liite 1970's, and was
further developed by Charles Symons. It uses a weighted sum of the number of inputs, outputs, ,

61

master files and inquiries in a product to. predict development size [ALBRECHT]. To count function
points, the first step is to classify each component by using standard· guides to rate each component
as having low, average, or high complexity. The second basic step is to tabulate function component
counts. This is done by entering the appropriate counts in the Function Counting Form, multiplying
by the weights on the form, and summing up the totals for each component type to obtain the
Unadjusted Function Point Count. The third step is to rate each. application characteristic from 0 to
5 using a rating guide, and then adding all the ratings together to obtain the Characteristic Influence
Rating. Finally, the number of function points is calculated using the equation below. [SQE]

FunctionPoints = UnadjustedFunction * (. 65 +.01 * CharacterlnjluenceRating)

A.t.3 Software Design Metrics

The main reasons for computing metrics during software design are the following: gives early
indication of project status; enables seleCtion of alternative designs; identifies potential problems early
in the software development process; lirriits complexity; and helps iri deciding how to modularize so
the resulting modules are both testable and maintainable. In general, good design practices involve
high cohesion of modules, low coupling of modules, and effective modularity. [ZAOE]

Primitive size metrics. These metrics are used to estimate the size of the software design or software
design documents.
- Number of pages or words
- DLOC (lines of PDL)
- Number of modules
- Number of functions.
- Number of inputs and outputs
- Number of interfaces

(Estimated) number of modules (NM). This metric provides measure'of product size, against which
the completeness of subsequent module based activities can be assessed. The estimate for the number
of modules is given by, NM = S/M, where S is the estimated size in LOC, M is the median module
size found in similar projects. The estimate NM can be compared to the median number of modules
for other projects. [ROOK]

Primitive fault metrics. These metrics identify potentially fault-prone modules. [ROOK]
- Number of faults associated with each module
- Number of requirements faults and structural design faults detected during detailed design·'

PrimitiyecQmplexity metrics. These metrics identify modules which are complex or hard tQ test.
. [ROOK]

- Number Qf parameters per mQdule
- Number Qf states or data paititiQns per parameter
- Number Qf branches in each module

62

Coupling. Coupling is the manner and degree of interdependence between software modules
[IEEE982]. Module coupling is rated based on the type of coupling, using a standard rating chart,
which can be found in [SQE]. According to the chart,. data coupling is the best type of coupling, and
content coupling is the worst. The better the coupling, the lower the rating. [SQE, ZAGE]

Cohesion. Cohesion is the degree to which the tasks performed within a single software module are
related to the module's purpose. The module cohesion value for a module is assigned using a
standard rating chart, which can be found in [SQE]. According to the chart, the best cohesion level
isfunctional, and the worst is coincidental, with the better levels having lower values. Case studies
have shown thaI fault rate correlates highly with cohesion strength. [SQE, ZAGE]

(Structural) fan-in / fan-out. Pan-inlfan-out represents the number of modules that call/are called
by a given module. Identifies whether the system decomposition is adequate (e.g., no modules which
cause bottlenecks, no missing levels in the hierarchical decomposition, no unused modules ("dead"
code), identification of critical modules). May be useful to compute maximum, average, and total
fan-inlfan-out. [ROOK, IEEE982]

Information flow metric (C). This metric represents the total number of combinations of an input
source to an output destination; given by, C = Cj x (fan-in x fan-outp, whereG is a code metric,
which may be omitted. The product inside' the parentheses represents the total number of paths
through a module. [ZAGE]

Staff hours per ma.jor defect detected (M). This metric is used to evaluate the efficiency of the design
inspection. The following primitives are used: time expended in preparation for inspection meeting
(TI), time expended in conduct of inspection meeting (T2), number of major defects detected during
the ith inspection (S), and total number of inspections to date (i). The staff hours per major defect
detected is given below, with the summations being from i=l to i=i. This measure is applied to new
code, and should fall between three and five. If there is significant deviation from this range, then the
matter should be investigated. (May be adapted for code inspections). [IEEE982]

Defect Density CDD). Used after design inspections of new development or large block modifications
in order to assess the inspection process. The following primitives are used: total number of unique
defects detected during the ith inspection or ith software development activity CD), total number of
inspections to date (i), and number of source lines of design statements in thousands (KSLOD). The
measure is calculated by the ratio below, where the sum is from i=l to i=i. This measure can also be
used in the implementation activity, in which case the number of source lines of executable code in
thousands (KSLOC) should be substituted for KSLOD. [IEEE982]

DD

63

Test related primitives. These metrics check that each module will be/has been adequately tested, or
assesses the effectiveness of early -testing activities. [ROOK]
- Number of software integration test cases planned/executed involving each module
- Number of black box test cases planned/executed per module
- Number of requirements faults detected (and re-assesses quality of requirements specification)

A.1.4 Code Metrics

Lines of Code (LaC). Although lines of code is Qne of the most popular metrics; it has no standard
definition. The predominant definition for LaC is "any line of a program text that is not a comment
or blank line, regardless of the number of statements or fragments of statements on the line." [SQE]
It is an indication of size, which allows "for estimation of effort, time scale, and total number of faults.
For the same application, the length of a program partly depends oil the language the code is written
in, thus making comparison 'using LOC difficult. However, LaC can be a useful measure if the
projects being compared are coIisistentin their development methods (e.g., use the same language,
coding style). Because of its disadvantages, "the use of LOC as a management metric (e.g., for project
sizing beginning from the software requirements activity) is controversial, but there are uses for this
metric in error analysis, such as to estimate the values of other metrics. ' The advantages of this metric
are that it is conceptually simple, easily automated, and inexpensive. [SQE]

Halstead software science metrics. This set of metrics was developed by Maurice Halstead, who
claimed they could be used to evaluate the mental effort and time required to- create a program, and
how compactly a program is expressed. These metricsare based on four primitives listed below:

nl = number of unique operators
n2 = number of unique operands
N I = total occurrences of operators
N 2 = total occurrences of operands ---

- - -

The program length measure, N, is the sum-of NI and N2,. Other software science metrics are listed
below. [SQE]

Vocabulary: n = nl + n2 -
Predicted length: N" = (nl * 10g2nl) + (n2 * log2Ilz)i
Program volume: V = N * log2n -
Effort: E = (nIN2Nlog2n)/(2n2)
Time: T = E/B; HalsteadB~18-
Predicted number of-bugs:' B = V/3000

Number of entries lex its 'per module. Used to assess 'the- complexity of a software architecture, by
counting the number of entry and exit -points for each module. The equation to determine the
measure for the ith module is simply 11\ = ei + ~; where Ii is the number of entry points for the ith
module, and Xi is the number of exit points for the ith module. [IEEE982]

Cyclomatic complexity eC)' Used to determine the structural complexity of a coded module in order
to limit its complexity, thus promoting understandability. In general. high complexity leads to a high

64

number of defects and maintenance cost~. Also used to identify minimum number of test paths to
assure test coverage. The primitives for this measure include the number of nodes (N), and the
number of edges (E), which can be determjned from the graph representing the module. ,The measure
can then be computed with the formula, C = E - N. + 1. [IEEE982, SQE]

Amount of data. This measure can be determined by primitive metrics such as Halstead's n2 and N 2,

number of inputs/outputs, or the number of variables. 'These primitive metrics can be obtained from
a compiler cross reference. [SQE] ,

Liye variables. For each line iI.I a section of code,determine the number of live variables (i.e.,
variables whose values could change during execution-of that section of code). The average number
of live variables per line of code is the sum of the number of live variables for each line, divided by
the number of lines of code. [SQE] \

variable scope. The variable scope is the number of source statements between the first and last
reference of the variable. For example,. if variable A is first referenced on line 10, and last referenced
on-line 20, then the variable scope for. Ais 9. To determine the average variable scope for variables
in a particular section of code, first determine the variable scope for each variable, sum up these
values, and divide by the number of variables [SQE]. With large scopes, the understandability and
readability of the code is reduced.

variable spans. The variable span is the number of source statements between successive references
ofthe variable. For each variable, the average span can be computed. For example, if the variable
X is referenced on lines 13, 18,20,21, and 23, the average span would be the sum of all the spans
divided by the number of spans, i.e., (4+ 1 +0+1)/4 = 1.5. With large spans, it is more likely that a far
back reference will be forgotten. [SQE]

A.I.S Test Metrics

Primitive defectlerrorlfault metrics., These metri<;:s can be effectively used with SPC techniques, such
as bar charts, and Pareto diagrams. These metrics can also be used to form percentages (e.g.,
percentage of logic errors = number of logic errors -:- total number of errors).
- Number of faults detected in ~ach module
- Number of requirements, design, and codingJaults found during unit and integration testing
- Number of errors by type (e.g., logic, computational, interface, documentation)
- Number of errors by cause or origin
- Number of errors by severity (e.g., critical, major, cosmetic)

Fault density (ED). This measure is computed by dividing the number of faults by the size (usually
in KLOC, thousands of lines of code). It may be weighted by severity using the equation,

FDw = (WI SIN + W 2 NN +W3 MIN) / Size

where N = total number of faults
S,=:,number of severe faults
A= number of average severity faults .

65

. M = number of minor faults
Wi = weighting factors (defaults are 10, 3, and 1)

FD can be used to perform the following: predict remaining faults by comparison with expected fault
density; determine if sufficient testing has been completed based on predetermined goals; establish
standard fault densities for comparison and prediction. [IEEE982, SQE] .

Defect age. Defect age is the time between when a defect is introduced to when it is detected or
fixed. Assign the numbers 1 through 6 to each of the software development activities from software
requirements to software operation and maintenance. The defect age is computed as shown. [SQE]

A D
,E, tA L (ActivityDetected-Activitylntroduced)

verage eJec ge= .
. . NumberDejects

Defect response time. This measure is the time between when a defect is detected to when it is fixed
or closed. [SQE]

Defect cost. The cost of a defect may be a sum of the cost to analyze the defect, the cost to fix it,
and the cost of failures already incurred due to the defect. [SQE]

Defect removal efficiency (DRE). The DRE is the percentage of defects that have been removed
during an activity, computed with the equation below. The DRE can also be computed for each
software development activity and plotted on a bar graph to show the relative defect removal
efficiencies for each activity. Or, the DRE may be computed for a specific task or technique (e.g.,
design inspection, code walkthrough, unit test, 6-month operation, etc.). [SQEl

DRE

Primitive test case metrics

--,-_N_u_m_b_e_rD---=efi:....e_c_ts_R_e...;..mo_v_ed __ d 00
NumberDejectsAtStartOfProcess .

- Total number of planned white/black box test cases run to completion
- Number of planned software integration tests run to' completion
- Number of unplanned test cases required during test activity

Statement coverage. Measures the percentage of statements executed (to assure that each statement
has been tested at least once). [SQE]

Branch coverage. Measures the percentage of branches executed. [SQE]

Path coverage. Measures the percentage of program paths executed. It is generally impractical and
inefficient t6 test all the paths in a program. The count·of the number of paths may be reduced by
treating all possibleloopiterations as one path. [SQE] Path' coverage may be used to ensure 100%
coverage of critical (safety or security related) paths.

66

Data flow coverage. Measures the definition and use of variables and data structures .. [SQE]

Test coverage. Measures the completeness of the testing activity. Test coverage is the percentage
of requirements implemented (in the form of defined test cases or functional capabilities) multiplied
by the percentage of the software structure (in units, segments, statements, branches, or path test
results) tested. [AIRFORCE]

Mean time to failure (MTIF). Gives an estimate of the mean time to the next failure, by accurately
recording failure times ti, the elapsed time between the ith and the (i-l)st failures, and computing the
average of all the failure times. This metric is the basic parameter required by most software
reliability models. High values imply good reliability. [IEEE982]

Failure rate. Used to indicate the growth in the software reliability as a function of test time and is
usually used with reliability models. This metric requires two primitives: ti, the observed time
between failures for a given severity level i, and fi' the number of failures of a given severity level in
the ith time interval. The failure rate A(t) can be estimated from the reliability function R(t), which
is obtained from the cumulative probability distribution F(t) of the time until the next failure, using
a software reliability estimation model, such. as the nonhomogeneous Poisson process (NHPP) or
Bayesian type model. The failure rate is as shown below, where R(t).= 1 - F(t). [IEEE982]

A(t) = -lIR(t) [dR(t)]
dt

Cumulative failure' profile. ,Uses a graphical technique to predict reliability, to estimate additional
testing time needed tO,reach an acceptable reliability level, and to identify modules and "subsystems'
that require additional testing. This metric requires one primitive, fi' the total number of failures of
a given severity level i in a given time interval. Cumulative failures are plotted on a time scale. The
shape of the curve is used to project when testing will be complete, and to assess reliability. It can
provide an indication of clustering of faults in modules, suggesting further testing for these modules.
A nonasymptotic curve also indicates the need for continued testing. [IEEE982]

A.l.6 Software Installation Metrics

Most of the test metrics are also applicable during software installation. ,The specific metrics used
will depend on the type of testing performed. If acceptance testing is conducted, a requirements trace
may be performed to determine what percentage of the software requirements are satisfied in the
product (i.e., number of software requirements fulfilled divided by the total number of software
requirements).

A.I.7 Software Operation and Maintenance Metrics

Every metric.that can be applied during software development may also be applied during software
maintenance. The purposes may differ somewhat. For example, software requirements traceability
may be used to ensure that software maintenance requirements are related to predecessor
requirements, and that the test activity covers the same test areas as for the developme~t. Metrics

67

that were used during software development may be used again during' software maintenance for
comparison purposes (e.g., measuring the complexity of a module before ,and after modification).
Elements of ,support, such as customer perceptions, training, hotlines, documentation, and user
manuals, can also be measured.

Primitive change metrics
- Number of changes
- Cost/effort of changes
- Time required for each change '
- LOC added, deleted, or modified'
- Number of fixes, or enhancements

Customer ratings, These metrics are based on results of customer surveys, which ask customers to
provide a rating or a satisfaction score (e.g ... ·on a scale of one to ten) of a vendor'S product or
customer services (e.g., hbtlines, fixes, user manual). Ratings and scores can be tabulated and plotted
in bar graphs.

Customer service metrics' '
- Number of hotline calls received
- Number of fixes for each type of product .
- Number of hours required for fixes
- Number of hours for training (for each type of product)

A.2 Statistical Process Control Techniques

Statistical process control (SPC) is the application of statistical methods to provide the information
necessary to continuously control or improve activities throughout the entire development of a
product [OPMC]. SPC techniques help to locate trends, cycles, and irregularities within the software
development process and provide' clues, about how well the process meets specifications or
requirements. They are tools for measuring and understanding process variation and distinguishing
between random inherent variations and significant deviations so that correct decisions can be made
about whether to make changes to the process or product.

To fully understand a process, it is necessary to determine how the process changes over time. To
do this, one can plot error data (e.g., total number of errors, counts of specific types of errors) over
a period of time (e:g., days, weeks) and then interpret the resulting pattern. If, for'instance, a large
number of errors 'are found in a particular software development activity, an, investigation of the tasks
in that activity or preceding ones may reveal that necessary development tasks were omitted (e.g.,
code reviews were not conducted during the code activity). A plot of the sources of errors may show
that a particular group is the most frequent source of errors; Further investigation may confirm that
members of the group do not have sufficient experience and training. A plot of the number of specific
types of errors may show that many errors are related to incorrect or unclear software requirements
specifications (e.g., software requirements' are written in, a way that consistently causes
misinterpretations, or they fail to list enough conditions and restrictions). This would indicate that
the software requirements activity needs to be modified.

68

There are several advantages to using SPC techniques. First, errors may be detected earlier or
prevented altogether.' By monitoring the software development process, the cause·ofthe error (e.g:,
inadequate standards, insufficient training, incompatible hardware) may be detected before additional
errors are created. Second, using SPC techniques is cost-effective, because less effort may be
required to ensure that processes are operating correctly than is required to perform detailed checks
on all the outputs of that process. Thus, higher quality may be achieved at a lower development
expense. Finally, use of SPC techniques provides quantitative measures of progress and of problems
so less ~uesswork is required [DEMMY].

Despite the advantages, there are also several potential disadvantages. To be successful, SPC
requires discipline, planning, continuous commitment to the timely solution of process problems, and
frequent access to information from the software development process [DEMMY].

A.2.1 Control Charts·

The primary statistical technique used to assess process variation is the control chart. The control
chart displays sequential process measurements relative to the overall process average and control
limits. The upper and lower control limits establish the boundaries of normaLvariation for the process
being measured. Variation within control1imits is attributable to random or chance causes, while
variation beyond control limits indicates a process change due to causes other than chance -- a
condition that may require investigation. [OPMC] The upper control limit (UCL) and lower control
limit (LCL) give the boundaries within which observed fluctuations are typical and acceptable .. They
are usually set, respectively, at three standard deviations above and below the mean of all
observations. There are many different types of control charts, pn, p, c, etc., which are described in
Table A-I. This section is based on [OPMC], [SMITH], [CAPRIO], and [JURAN].

-. i

Implementation

1. Identify the purpose and the characteristics of the process to be monitored.

2. Select the appropriate type of control chart based on the type of characteristic measured, the
data available, and the purpose of the application.

3. Determine the sampling method (e.g., number of samples (n), size of samples, time frame).

4. Collect the data.

5. Calculate the sample statistics: average,standard deviation, upper and lower control limits.

6. Construct the control chart based on sample statistics.

7. Monitor the process by observing pattern of the data points and whether they fall within
control limits.

69

Table A-I. Types of Control Charts

I TYPE I DESCRIPTION I IMPLEMENTATION I
np number of nonconforming units The number of units in each sample with the selected

(e.g., number of defective units) characteristic is plotted; sample size is constant.

p fraction of nonconforming units For each sample, the fraction nonconforming, obtained by
(e.g., fraction of defective units) dividing the number nonconforming by the total number of units

observed, is plotted; sample size can change.

c number of nonconformities For each sample, the number of occurrences of the characteristic
(e.g., number of errors) in a group is plotted; sample size is constant.

u number of nonconforrnities per unit For each sample, the number of nonconformities per unit,
(e.g., number of errors per unit) obtained by dividing the number of nonconforrnities by the

number of units observed, is plotted; sample size can change.

X single observed value The value for each sample of size 1 is plotted.

XB X-Bar For each sample, the mean of 2 to 10 observations (4 or 5.are
optimal) is plotted.

R range The difference between the largest and smallest values in each
sample is plotted.

XM median The median of each sample is plotted.

MR moving range The difference between adjacent measurements in each sample is
plotted.

Interpretation

The existence of outliers, or data points beyond control1imits, indicates that nontypical circumstailces
exist. A run, or consecutive points on one side of the average line (8 in a row, or 11 0(12, etc.)
indicates a shift in process average. A sawtooth pattern, which is a successive up and down trend
with no data points near the average line, indicates over adjustment or the existence of two processes.
A trend, or steady inclining or declining progression of data points represents gradual change in the
process. A hug, in which all data points fall near the average line, may indicate unreliable data. A
cycle, or a series of data points which is repeated to form a pattern, indicates a cycling process.

Application Examples

Control charts are applicable to almost any measurable activity. Some examples for software include
the following: number of defects/errors, training efforts, execution time, and number of problem
reports per time period. An example of an np control chart with hypothetical data is shown in Figure
A-I. In this example, the number of samples (n) is 100. Each data point represents the number of
defects found in the software product in a work week.

70

UCL = 10.13

o~--------------------------------------
Work Week

LCL = -1.83

Figure A·I np Control Chart.

A.2.2 Run Chart

A run chart is a simplified control chart, in which the upper and lower control limits are omitted. The
purpose of the run chart is more to determine trends in a process, rather than its variation. Although
very simple, run charts can be used effectively to monitor a process, e.g., to detect sudden changes
and to assess the effects of corrective actions. Run charts provide the input for establishing control
charts after a process has matured or stabilized in time. Limitations of this technique are that it
analyzes only one characteristic over time, ,and it does not indicate if a single data point is an outlier.
This section is based on [OPMC] and [CAPRIO],

Implementation

1. Decide which outputs of a process to measure.
2. Collect the data.
3. Compute and draw the average line.
4. Plot the individual measurements chronologically.
5. Connect data points for ease of interyretation.

Interpretation - See Interpretation for Control Charts.

Application Examples

Run charts, are applicable to almost any measurable activity. Some examples for software include the
following: number of defects/errors, number of failures, execution time, and downtime.

71

A.2.3 Bar Graph

A bar graph is a frequency distribution diagram in which each bar represents a characteristic, and the
height of the bar represents the frequency of that characteristic. The horizontal axis may represent
a continuous numerical scale, or a discrete non-numerical scale. Generally, numerical-scale bar charts
in which the bars have equal widths are more useful for comparison purposes; numerical-scale bar
charts with unequal intervals can be misleading because the characteristics with the largest bars (in
terms of area) do not necessarily have the highest frequency. This section-is based on [SMITH].

Implementation

1. Define the subject and purpose~

2. Collect the data. Check that the sample size is sufficient.

3. Sort the data by frequency (or other measure) of characteristics.

4. For numerical-scale bar charts, determine the number of bars and the width of the bars (class
width), by trying series of class widths, avoiding too fine or too coarse a granularity.

5. Construct the chart and draw the bars. The height of a bar represents the frequency of the
corresponding characteristic.

Interpretation '

In a: simple bar' graph in which the characteristics being measured are discrete and non-numerical or
if each bar has the same width, the measures for each characteristic can be compared simply by
comparing the heightS of the bars. For numerical-scale graphs' with unequal widths, one should
remember not to interpret large bars as necessarily meaning that a' large proportion of the entire
population falls in that range.

Application Examples

Bar graphs are mostly used to compare the frequencies of different attributes. For example, in Figure
A-2, it is used to plot the average customer rating for each evaluation category (e.g., customer
service, hotlines, overall satisfaction). The graph shows that Category D has the highest rating.

Other examples of characteristics that may be plotted .include: number or percentage of problem
reports by software development achvity or by type.

A.2.4 Pareto Diagram

A Pareto diagram is a bar graph in which the bars are arranged in descending order of magnitude.
The purpose of Pareto analysis is to identify the major problems in a product or process, or to identify
themos! significant causes fora given. effect. This allows a developer to prioritize problems and
decide which problem area'to work on .first. This section is based on [OPMC] and [CAPRIO].

72

5

1

o
A B c o E F G

Evaluation Category

Figure A-2 Bar Chart

Implementation

1. Construct a bar graph, except the bars should be in descending order of magnitude (height).
2. Determine the "vital few" cause: draw a cumulative percent line and applying the 20/80 rule.
3. Compare/identify the major causes. Repeat until root cause of the problem is revealed.

Interpretation

Pareto analysis is based on the 20/80 rule, which states that approximately 20% of the causes (the
"vital few") account for 80% of the effects (problems). The "vital few" can be determined by dr,!-wing
a cumulative percent line and noting which bars are to the left of the point marking 80% of the total
count. In Figure A-3, the vital few are logic, computational, and interface errors since ·80% of the
errors are found in these modules. By knowing the primary causes of a problem or effect, the
developer can decide where efforts should be concentrated.

Application EXamples

Most data that can be plotted on a non-numerical scale bar graph can· also be plotted on a Pareto
diagram. Examples include: number or percentage of errors by type, by cause, or by software
development activity, and number or percentage of problem reports by type or by software
development activity.

A.2.S Scatter Diagram

A scatter diagram is a plot of the values of one variable against those of another variable to determine
the relationship between them:., This technique was 'popularized by Walter Shewhart at Bell
Laboratories. Scatter diagrams c' are used during analysis to 'understand the cause and effect

73

100
90

III ... 80 0
UJ 70
Cii
'0 60 1-" - 50 0
Q)

40 C)
cu -c:: 30 Q)

~ 20 Q)
c..

10
0

"~ <n II) CI) !l i:: Q .S i::

] 5 II)
0 ..g ::a 5 ~ § ..;g la Q

::s .s ::c Q la Po. 0

3 ..;g Q ..c:
i::

'" ~ Q

Type of Error

Figure A·3 Pareto Chart.

relationship between two variables. They are also called correlation diagrams. This section is based
on [KITCHENHAM], [OPMC], and [CAPRIO].

Implementation

1. Define the subject and select the variables.

2. Collect the data.

3. Plot the data points using an appropriate scale.

4. Examine the pattern to determine whether any correlation exists (e.g., positive, negative).
For a more precise specification of the relationship, regression, curve fitting or smoothing
techniques can be applied.

Interpretation

If the data points fall approximately in a straight line, this indicates that there is a linear relationship,
which is positive or negative, depending on whether the slope of the line is positive or negative.
Further analysis using the method of least squares can be performed. If the data points form a curve,
then there is a non-linear relationship. If there is no apparent pattern, this may indicate no
relationship. However, another sample should be taken before making such a conclusion.

74

Application Examples

The following are examples of pairs of variables that might be plotted:

• complexity vs. defect density (example shown in fig. A-4)
• effort vs. duration (of an activity) .
• failures vs. time
• failures vs. size
• cost vs. time

48

X Median
19

•

..

..

.. ..

.... YMedium
- - - - -- - - - - - - - - -- - .--.. - ~-.- - - - - -. - 4- - -- - - - - - - - -- - - 22

. ..
• • •

• ' .
I ,

O++--~----~----~---r----+----+----+---~

o 5 10 15 20 25 30 35 40

Cyclomatic Complexity

Figure A·4 Scatter Diagram.

A.2.6. Method of Least Squares (Regression Technique)

This technique can be used in conjunction with scatter diagrams to obtain a more precise relationship
between variables. It is used to determine the equation of the regression line, i.e., the line that "best
fits" the data points. With this equation, one can approximate values of one variable when given
values of the other. The equation of the line is Y = a + bX, where a and b are constants which
minimize S, the sum of squares of the deviations of all data points from the regression line. For any
sample value ~ of X, the expected Yvalue is a + bx j • This section is based on [OPMC], [CAPRIO],
and [SMITH].

Implementation

1. Collect n data values for each of the 2 variables, X <illd Y, denoted by Xl' X2'.··, ~ and Yl'

Y2'"'' Yn'

75

2. Minimize S = ~ (Yi - a - bxi by first taking the partial derivative of S with respect to a and
then with respectto b, setting these derivatives to zero, and then solving for a and b.

. . .'

3. The results obtained from steps should be the following, where XB = ~x/n and Y B = ~y/n:

Interpretation

The constant a represents the intercept of the regression line, i.e., the value of Y when X is 0, and
b represents the slope of the regression line. The idea of this technique is to minimize S, so that all
data points will be as close to the regression line as possible. The reason for taking the squares of
the deviations, rather than simply the deviations, is so that positive and negative deviations Will not
cancel each other when they are summoo. It would also be possible to sum the absolute values of the
deviations, but absolute values are generally harder to work with than squares. '

Application Examples'

See Application Examples for Scatter Diagrams.

A.3 Software Reliability Estimation Models

"Reliability" is used in a general sense to express a degree of confidence that a part or system will
successfully function ina certain environment during, a speCified time period [JURAN]. Software
reliability estimation models can predict the future behavior of a software product, based on its past
behavior, usually in terms of failure rates. Since 1972, more than 40 software reliability estimation
models, have been developed, with each based on a certain set of assumptions characterizing the
environment generating the data. However, in spite of much resear~h effort, there is no universally
applicable software reliability estimation model which'can be trusted to give'accurate predictions of
reliability in all circumstances [BROCKLEHURST].

It :is usually possible to obtain accurate reliability predictions' for software; ~d to have confidence in
their accuracy, if appropriate data is used [ROOK]. Also, the us~ ofreliabl1ity estimation models is
still under active research, so improvements to model capability' are likely. Work by Littlewood
(1989), for example,involves the use of techniques for imp'roving the accuracy of predictions by
learning from the analysis of past errors [ROOK], and recalibration [BROCKLEHURST].

Some problems have been encountered by those'who have tried to ,apply reliability estimation models
in practice. The algorithms used to estimate the model parameters may fail to converge. When they
do, the estimates can vary widely as more data is entered [DACS]. There is also the difficulty of
choosing which reliability model to use, especially since one can not know a priori which of the many
models is most suitable in a: partictilarcontext [BROCKLEHURST]. In general, the -qse of these
models is only suitable for situations in which fairly modest reliability levels are required [ROOK].

76

There are three general classes of software reliability estimation models: nonhomogeneous Poisson
process (NHPP) models, exponential renewal NHPP models, and Bayesian models. Some of the
more common reliability estimation models are described below [DUNN], [L YU].

• Jelinski-Moranda (lM). One of the earliest models, it ~sumes the debugging process is
purely deterministic, that is, that each defect in the program is equally likely to produce failure

. (but at. random times), and that each fIx is perfect, i.e., introduces no new defects. It also
assumes that the failure .rate is proportional to the number of remaining defects and remains
constant between failures. This model tends to be too optimistic and to underestimate the
number of remaining faults; this effect has been observed in several actual data sets.

• Goel-OkUmoto (GO). This model is similar to lM, except it assumes the failure rate (number
of failure occurrences per unit of time) improves continuously in time ..

• Yamada Delayed S-Shape. This model is similar to GO, except it.accounts for the learning
period that testers go through as they become familiar with the software at the start of testing.

• Musa-Okumoto (MO). This NHPP model is similar to GO, except it assumes that later fixes
have a smaller effect on a program's reliability than earlier ones. Failures are assumed to be
independent of each other.

• Geometric. This model is a variation of lM, which does not assume a fixed, finite number of
program errors, nor does it assume that errors are equally likely to occur.

• Schneidewind. Similar to lM, this model assumes that.as testing proceeds with time, the error
detection process changes, and that recent error counts are usually more useful than earlier
counts in predicting future counts"

• Bayesian Jelinski-Moranda (BJM). This model is similar to.J:M, except that it uses a Bayesian
inference scheme, rather than maximum likelihood. Although BlM does not drastically
underestimate the number of remaining errors, it does not offer significant improvement over
lM. Actual reliability predictions of the two models,are usually yeryclose.

• Littlewood. This model attempts to answer the.criticisms of lM and BlM by assuming that
different faults have different sizes, i.e.; they contribute uneqUally to the unreliability of the
software. This assumption represents the uncertainty about the effec~ of a fix.

• Littlewood-Verrall (LV). This model takes into account the uncertainty of fault size and
efficacy of a fix (i.e., a fIx is of uncertain magnitude and may make a program less reliable),

. by letting the size of the improvement in the failure rate at a fix vary randomly.

• Brooks and Motley (BM). The BM binomial and Poisson models attempt to consider that
notall of a program is· tested equally during a testi~g period ~d that only some portions of
the program may be available for testing during its development.

77

• Duane. This model assumes that the failure rate changes continuously in time, i.e., it follows
a nonhomogeneous Poisson process. The cumulative failure rate when plotted against the
total testing time on a In-In graph follows a straight line. The two parameters for the equation
of the line can be derived using the method of least squares.

Implementation

The following is a generic procedure for estimating software reliability [AIAA]. It can be tailored
to a specific project or software development activity; thus some, steps may not be' used in some
applications.

1. Identify the application. The description of the application should include, at a minimum, the
identification of the application, the characteristics of the application domain that may affect
reliability, and details of the intended operation of the application system.

2. Specjfy the requirement. The reliability requirement should be specific enough to serve as a
goal (e.g., failure rate of 10.9 per hour).

3. Allocate the requirement. The reliability requirement may be distributed over several
components, which should be identified.

4. Define failure. A specific failure definition is usually agreed upon by testers, developers, and
users prior to the beginning of testing. The definition should be consistent over the life of the
project. Classification of failures (e.g., by severity) is continuously negotiated.

5. Characterize the operational environment. The operational environment should be described
in terms of the system configuration (arrangement of the system's components), system
evolution and system operational profile (how system will be used).

6. Select tests. The test team selects the most appropriate tests for exposing faults. Two
approaches to testing can be taken:, testing duplicates actual operational environments as
closely as possible; or testing is conducted under more severe conditions than expected in
normal operational environments, so that failures can occur in less time.

7. Select the models. The user should compare the models prior to selection based on the
following criteria: predictive validity, ease of parameter measurement, quality of the model's
assumptions, capability, applicability, simplicity, insensitivity to noise, and sensitivity to
parameter variations.

8. Collect data.

9. Determine the parameters. There are three common methods of estimating the parameters
from the data: method of moments, least squares, and maximum likelihood. Each of these

. methods has useful attributes, but maximum likelihood estimation is the most commonly used
approach. As stated previously, some data sets may cause the numerical methods not to

78

converge. There exist automated software reliability engineering tools, which are capable of
performing parameter estimation.

10. Validate the mode1. The model should be continuously checked to verify that it fits the data,
by using a predictive validity criteria or a traditional statistical goodness-of-fit test (e.g., Chi
square).

11. Perform analysis. The results of software reliability estimation may be used for several
purposes, including, but not limited to, estimating current reliability, forecasting achievement
of a reliability goal, establishing conformance with acceptance criteria, managing entry of new
software features or new technology into an existing system, or supporting safety
certification.

Interp retation

A disadvantage of these models is that they rely on testing and hence are used rather late in the
software development process. The models are usually time based, that is, the probability is b<l;sed
on time to failure. Research is needed to identify how to use more valuable parameters with these
models. See [ROOK].

Application Examples

Applicability of the models should be examined through various sizes, structures, functions and
application domains. An advantage of a reliability model is its usability in different development and
operational environments, and in different software development activities. Software reliability
models should be used when dealing with the following situations:

• evolving software (i.e., software that is incrementally integrated during testing)
• classification of failure severity
• incomplete failure data
• hardware execution rate differences
• multiple installations of the same software
• project environments departing from model assumptions

79

INDEX

Page(s)

Accuracy ... v, 7, 9, 11-17,23,26,29,30,33,76
Actual and formal parameters mismatch .. 29
Algorithm analysis .. ' 23, 25, 26, 35
Algorithm efficiency " .. 26, 31
Allocation of V & V resources ... 31
Alternative model ... 33, 36
Anachronistic data .. 28
Analytic modeling ... 26, 35
Anomalies or discrepancies between versions 26
Array size ' .. 26
Back-to-back testing ... ,' ... 26, 35
Behavior ... 10, 15,25,30,31,45,46,48,76
Bottlenecks " ... 26, 27, 31, 32, 63
Boundary test cases '" 27, 28, 30, 31
Boundary value analysis ... 26,35
Branch and path identification .. 27, 28, 30, 31
Branch testing "'. 27, 28, 30, 31
Calls to subprograms that do not exist ... " ' '.' 28
Cell structure of units ... 27
Checklists , 29, 30, 33
Code reading ' ... 24, 26, 35
Code V&V .. : 4, 10, 15,24
Common code ... 31
Completeness 11-17,19,30,33,34,61,62,67
Consistency '" ~ .. 11,12,14-16,19,26,27,29-31,33,36,60
Consistency analysis , 33, 36
Consistency in computation ... 26
Control flow analysis .. 5, 23-26, 35
Control groups ... 33, 36
Correctness " v, 1,3, 7, 1O~16, 23, 24, 26, 27, 30-32, 35, 51
Coverage analysis ; ,.,27,35
Credibility analysis ... 33, 37
Critical timing/flow analysis .. 27,35
Criticality analysis .. vii, 7 ~9, 25, 32,36, 41
Data characteristics ... 27
Data fields unconstrained by data boundaries 28
Data flow analysis ... 23, 27, 35
Database analysis ' 23, 24, 27, 35
Decision (truth) tables .. '.' 27, 35
Design errors .. 9, 32
Design evaluation : 4, 14, 27
Desk checking : 27, 35

81 Preced~ng page blank

pynarnic analysis " .. 23,29
Effective forerunners to testing .. 29,31,33
Environment interaction ~ 27, 30, 31
Error propagation ... ' .. 26, 27, 32, 33
Error seeding ' ' 28, 35
Evaluation of program paths ... 27, 32
Execution monitoring, sampling, support ... 31
Expected vs actual results .. 27
Failure to implement the design .. 28
Failure to save or restore registers .. 28
Feasibility ... 11, 26, 31, 52
Field testing .. 33, 37
File sequence error ... 27, 28, 31
Finite state machines .. vii, 28, 35
Fonnal specification evaluation 27, 29, 31, 33
Functional testing .. ' 24,28, 35
Global inforrnationflowand consistency ... 27
Go-no-go decisions .. 29, 33
Hazard analysis ... 2, 7-9, 28, 30, 32, 56
Hierarchical interrelationship of units ... 27, 31
Illegal attribute testing .. 33, 37
Iinproper nesting of loops and branches .. 28
Improper program linkages ... 28
Improper sequencing of processes .. 28
Inaccessible code ',' 27
Incpmplete predicates ... 28
Incomplete software requirements specification 28, 30, 32
Inconsistencies between limits ... 26
Inconsistencies between subroutine usage list and called subrout : 29
Inconsistency of attributes of global variables 29
Inconsistent interface parameters ' 29
Inconsistent software requirements ... 28
Incorrect access of array components ... 28
Incorrect assumptions about static and dynamic storage of values 29
Incorrect functions used or incorrect subroutine called 29
Incorrect product version shipped ... ~ .. 32
Incorrect test results'· .. 32
Inefficient data transport : ... 28'
Infinite loops .. 28
Infonnation flow consistency : .. ~ ; 29, 31
Initialization faults : ' 28
Input-output description errors ; 29
Input-output faults ' .. ' 28
Inspections ' 23, 24, 29, 35, 63
Instruction modification :. : ... 28
Inter-unit structure ... 27, 31

82

Interlace analysis 4,12-14,16,25,29,33,35,41
Interface testing ... 18,29,33,35
Inverted predicates ... 28
Knowledge-based system (lmS) iii, v-vii, 1,2, II, 13, 15-22,33,34,36,45-50
Logic errors .. 17,27,29,31,33,65
Logical verification ... 16, 33-, 37
Loop invariants ... 27, 29
Manual simulation ... 29, 33
Memory allocation .. 30
Meta models ... -................ 33,37
Mismatched parameter lists ... 28
Missing labels or code ... ' 28
Missing validity tests .. ', ... 28
Misuse of variables .. 26, 28
Modeling .. '" 26-28, 30, 48, 49
Mutation analysis ; 29, 35
Numerical roundoff ' 26
Numerical stability . : 26
Omitted functions . ~ , .. 26, 30
Parameter checking " .. ' ' .. " 26, 32, 33
Partition testing ... 34, 37
Path testing .. : 27, 28, 31
Perlormance testing .. 30,35
Petri-nets .. '" 9, 30, 35
Planning for defaults when system over-stressed 32
Poor programming practices ,•... 26
Processing efficiency .. 26,27,31
Prodigal programming .. , : 28
Program decomposition -.................... ,' 31
Program execution characteristics .. 28, 31, 32
Proof of correctness ... 23,30-32, 35
Proof of critical sections ... 30
Prototyping ... ,23, 30, 36, 47, 50
Redundancy ' ' 26
Regression analysis and testing 16, 24, 30, 36
Reliability v, 1-3,9, 19,31,51-53,55,57,59,61,67,76-79
Reports on test cases that were omitted .. 32
Requirements parsing _ ... -... 30, 36
Retest after change , ... 27-33
Reuse iii, 2, 9, 11-22,33,36,39,40,42,46,50,53,57,59
Reviews '" ... " ... " 2,6,7,23,24,29,31-33,36,56,61,68

status reviews .. 29,33
technical reviews -............. 29,33

Rule verification .. 34, 37
Safety v, 1,3,6-8,12, 14,28,30,32,39,40,52-54,66,79
Security .. v, 1,3,6-9, 12,40,66

83

Sensitivity analysis '. ' .. 31, 36
Simulation ... " 23,29, 31, 33, 36
Sizing and timing analysis ... 23-25, 31, 36
Slicing ; ' 31,36,54
Small, but difficult, or error-prone sections of design or code 33
Software design evaluation .. : 27
Software Design Evaluation ... 4, 14
Software design V&V " 4,9, 13,23
Software failure mode, effects, and criticality analysis vii, 32
software failure mode, effects, and criticality analysis 9, 36
Software fault tree analysis .. 9, 32, 36
Software installation test ... ',' . 4, 10, 21
Software integration test 4, 10, 14, 18, 19,25,27,30,31,64-66
Software requirements evaluation ... 4, 11, 31
Software requirements indexing .. 31
Software requirements to design correlation 31
Software requirements V & V .. 4, 9-11, 23
Software system test 3,4, 10, 11, 18-20,24,25,27,28,30,31,33
Space utilization evaluation .. 26, 27,29, 31,41
Specification error .. 26
Standards check .. 31
Statement coverage testing .. 28, 31
Static analysis .' ... 23, 29 ' I
Statistical validation .. 34, 37
Stress testing ' 32, 36
Structural testing ... 24, 32, 36
Symbolic execution ... , 32, 36
Synchronization ... 27, 30
Syntaxertors .. 29,31,33
System performance prediction .. 26-28, 31
Test case adequacy .. 28, 31
Test case preparation .. 27, 28, 30
Test certification .. 32, 36
Test thoroughness .. 28
Threat analysis ... 28, 30, 32
Timing , : 9, 23-28, 30, 31, 35, 36
Turing tests ... 34, 37
Unauthorized recursion .. 28
Undeclared variables .. 28
Uninitialized variables ' ... 27-29, 31
Unreachable code ' .. ' '., .. 28
U nreferenced labels .. 28
Unused variables ... 27-29, 31
User interface " 30, 50
Variable references ... 27, 28, 31
Variable snapshots/tracing '' 28, 31

,84

Walkthroughs ... 24,32,36
Weight analysis ... 34,37

85

