

Intro & Recent Advances Remote Data Access via OpenDAP Web Services

ESDIS Presentation & Demonstration for the CEOS Working Group on Information Systems & Services (WGISS) May, 2015

Dave Fulker, President of OpenDAP, subcontractor to Raytheon for NASA/ESDIS

Presentation supported by NASA/GSFC under Raytheon Co. contract number NNG10HP02C

Part I Introduction to OpenDAP* Web Services

*OpenDAP is an organization <u>and</u> an acronym: *"Open-source Project for a Network Data Access Protocol"*

OpenDAP Concepts

originally from Distributed Ocean Data System (DODS) circa 1994

 ✓ URL ≈ dataset* | URL with constraint ≈ subset
 ✓ Retrieve ✓ dataset descriptions (metadata) dataset content (typed/structured)
 ✓ Retrieval protocol built in to multiple libraries
 → flexible data typing ✓ arrays (~coverages) tables (~features)

*dataset \approx granule

URL \approx **Granule*** per OpenDap's Data Access protocol (DAP)

Servers often have hierarchical collections.

Each URL references a distinct DAP "dataset."

Suffixes specify return types.

OpenDAP

12-May-2015

Depending on suffix, DAP returns metadata or content, with options for human- or machine-readable forms (XML, NetCDF4...). Suffix "dmr" -> metadata only.

Domain name often is an

organization's web server.

*dataset \approx granule

OpenDAP Datatype Philosophy

Internal data model has few data types For simplicity... **Types are domain-neutral but flexible** Structures & attributes > rich syntax & semantics These types support many domain-specific needs A recent crawl* (23,000 domains in .gov, .edu, .org) found >1400 collections with DAP servers

*Performed by the National Snow & Ice Data Center in an NSF/EarthCube project

5

OpenDAP services Function as Middleware

- Data ingest via encoding-specific adapters
 Handlers for a growing set of source-data types
 Multiple response encodings
 Native DAP—useful in Python, Java, C++ ,Fortran...
 netCDF (also GeoTIFF where possible)
 XML (⇒ HTTP via style sheets)
 - Recently added: WMS, W10n (JSON), WCS (beta)

Architectural Overview of Hyrax

a widely-used DAP server

URL + Query → <u>Sub</u>set & (future) results from <u>other</u> server functions

http:/.../granule.nc4?dap4.ce=constraints&dap4.func=functions

Dataset identifier as above, exceptDAP "constraint expressions" yieldreturn-type is NetCDF4 (= HDF)sub-arrays & other proper subsets

DAP4 "function expressions" enable extensions

Constraints specify subsets by variable names, by array indices & (for tables) by content. Likely extensions include statistics, UGRID subsetting, feature extraction...

The query form **&dap4.func=...** enables DAP extensions \Rightarrow new <u>server functions</u>

DAP-based Subset Selection (from arrays | tables)

Select variables by name
 For tabular data, this means selecting columns
 Select rows of a table via column-specific value constraints
 Allows both domain-based & range-based subsetting

Select sub-arrays by constraining their indices

12-May-2015

OpenDAP

(array-style) Index-Constrained Subsetting

Source Array

→ Sub-Array (response)

caveat — Index-Based Subsetting

- ★ Excellent if desired subset is a bounding box parallel to source array (indices ↔ coordinates)
 - Less useful when
 - Subset selection not based on domain coordinates
 - **A** Source is not organized as <u>coordinate-mapped</u> arrays
 - Desired subset is polygonal or is skewed (relative to source-array orientation)

Part II Recent Enhancements of OpenDAP Web Services With Demonstrations

This part of the presentation is drawn primarily from a project report on: NASA Data Interoperability

An EOSDIS Presentation & Demo Originally given March 27, 2015

Original Presenters: James Gallagher & Nathan Potter (OpenDAP)

This work was supported by NASA/GSFC under Raytheon Co. contract number NNG10HP02C

main NASA motivations for OpenDAP Enhancements

- **T** Easier software builds & better documentation
 - Authentication of data users
- A More response encodings
 - Open Geospatial Consortium (OGC) Web Services (WMS, WCS...)
 - **JavaScript Object Notation (JSON) for Webification (w10n)**
 - Requesting DAP ops on many granules at once
 - Response = concatenated CSV (arrays -> tables) or
 - **Response = zipped files**

progress on simplifying OpenDAP Server Installation

- **Context**
 - Hyrax-install complexity was once a barrier to use
 - Key Accomplishments
 - Adding modules does <u>not</u> increase the package count
 - Source build: now just 3 distinct packages
 - Previously 18 packages
 - Binary install: now just 2 RPMs + 1 WAR
 - Previously 15 RPMs + 1 WAR

progress enhancing OpenDAP's Website & Documentation

Key Accomplishments

- **Various Website repairs**
- 760 fixed links (from automated before/after crawls)
 - Five documents added

- Client configuration for authorization
- Server configuration for authorization
- Source-code build how-to
- Summary of Winter-2015 ESIP-panel on Web-services performance
- Server configuration for WMS provision

progress on User Authentication (via EarthData login at NASA EOSDIS)

Context/Things to Notice

- Fine-grained access control for <u>individual</u> directories
- Demo is Web-only, but cURL tests work as well
 - cURL—like most client applications—is built around libcurl, thus serving as a lowest common denominator
 - EarthData credentials are simply stored in a user's .netrc file
- Live Demo...

prior context for enhancing Multi-Granule Aggregation

Any servers have allowed DAP *providers* to form (virtual) aggregations of (similar) granules

But until now, end users could not choose

Granules to be aggregated

Forms of aggregation

Furthermore, array- & table-style subsetting could not be <u>mixed</u> (with or without aggregation)

12-May-2015

progress on requester-specified Multi-Granule Aggregation

Context/Things to Notice

- **Request data from 1,000s of files with one operation**
 - **N.B.** Necessitates use of HTTP POST (to avoid huge URLs)
- Two forms of aggregation response
 - Zipped netCDF files
 - Concatenated tables (CSV)
 - **N.B.** Arrays may be aggregated <u>as concatenated tables</u>!

Live Demo...

DAP Output-Encoding Extensions

OGC Protocol: WMS Web Mapping Service

WMS (Web Mapping Service)

- Great for 2-dim geospatial data on 'maps' 4 (but not for higher-dimensional data types)
- A bridge to display tools, notably, Google Earth Live Demo...

DAP Interoperability Leverage

relevance: OpenDAP & Interoperability

We demonstrated

Notably, it seems unlikely that either

Google Earth engineers anticipated reading HDF5 or

NASA engineers planned to display data on Google Earth!

This suggests* a definition for interoperability: "<u>supporting unanticipated uses</u>"

*Paraphrasing John Orcutt

This presentation, and the recent work described, were supported by NASA/GSFC under Raytheon Co. contract number NNG10HP02C

Raytheon

