
NASA's SMD and Open Source Science

Katie Baynes <u>kathleen.baynes@nasa.gov</u> Deputy Program Manager Earth Science Data Systems May 18, 2021

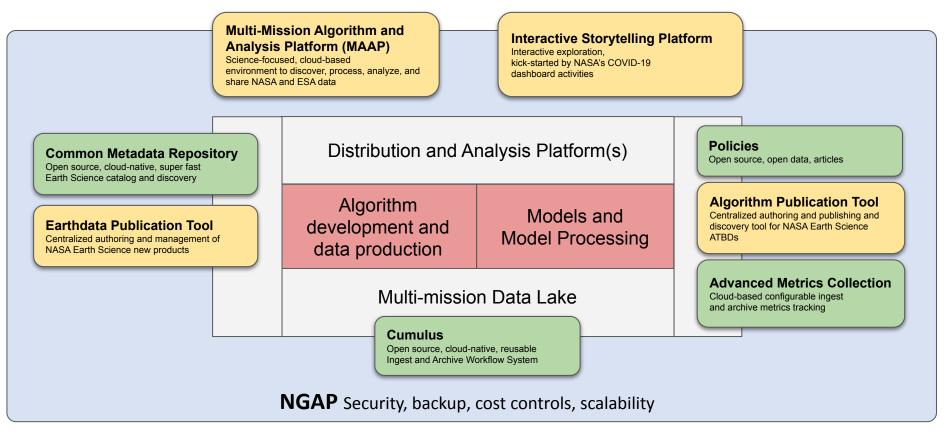
A Vision for Open Science

Expand participation, improve reproducibility, and accelerate scientific discovery for societal benefit.

A Continuum of Open Sourced Science unlimited data access

- Data access (\$\$)
- Accessible publications (\$\$)
- Siloed systems
- Limited Communication
- Proprietary Software
- "Closed-tent" culture

- Fully documented open software and algorithms
- Fully linked data and publications
- Open Access Journal Publications
- Fully Transparent Processes
- Reproducible across platforms
- "Teaching and Learning" Culture


Fully Open

- No public data access
- No publications
- No insight into processes

Fully Closed

- No reproducibility
- "Black Box" Culture

- Free data access
- Open software and algorithms
- "Green" Journal Publication
- Documented Processes
- Reproducible in specific environments
- "Open-Tent" Culture

Starting with S6 Michael Freilich, all future data access and storage will be cloud-native, including SWOT and NISAR and will have access to these capabilities

Strategic Partnerships to further Open Science Goal

Open Science Drivers

Accessibility to the scientific process for non-scientists Broader, and new perspectives and techniques to tackle challenging problems

Activities

Space Act Agreements Amazon Web Services (AWS) and Google (active) IBM, Microsoft and NVIDIA (in works) Interagency collaborations

Recent Successes

AWS Data Sandbox

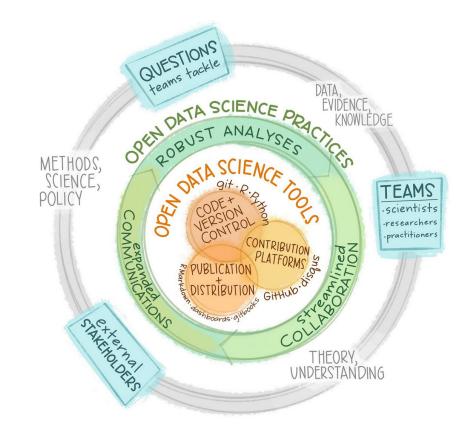
cloud credits for open science workshops to support the research and applications community

Formulation of SpaceML Collaboration

machine learning operations (MLOps) components and workflows that can be utilized by Earth science tools

NOAA

prototyping NASA data system software and collaboration on joint data lake


Building an Open Science Aware Community

Externally Focused Investments

- Targeted Workshops and Hackathons
- Engaging next generation of Data and Earth Scientists (FDL, SpaceML, Radiant Earth)
- Publishing about Open Science in the Community
- Updating messaging from communications

Building Internal Capacity

- Openscapes: utilizes "train the trainers" paradigm to teach open science principles and techniques
- Examining policy to encourage publication in Green/Gold Journals

Open Science for the Next Generation of NASA Missions

Cross DO Study: Data Processing

Developing concepts for a common science data processing system for product generation (L1 - 4).

Study facilitated and funded by Data Systems Program

Approach

Initiate an architecture concepts and prototyping study co-lead by JPL and GSFC with support from DO teams.

Expected DO Commitment .5 WYE and 3 workshops over 12 month period

Deliverable

Architectural options for an open common science data processing system for L1 - 4 products that identifies risks, incentives and potential partnerships. Study facilitated and funded by ESDS program

Approach

Initiate hardware and ground system architecture study to minimize data latency and support cross-DO science. Emphasis on identification of approaches for downlink, networking, and L0 generation using in-house and commercial capabilities.

Expected DO Commitment .25 WYE

<u>Deliverable</u> Architectural options including costs and risks to reduce data product latency. Cross DO Study: Data Latency

Evaluating flight hardware and ground system architectures to minimize product latency and support cross-DO science product generation.

Thank You