

Update on GOES and Landsat Active Fire Product Enhancement Requests for LANCE/FIRMS

NASA LANCE User Working Group Telecon October 23, 2019

Brad Quayle Disturbance Assessment and Services Program USDA Forest Service Geospatial Technology and Applications Center (GTAC)

GOES 16/17 Active Fire Request Background

- Question to the LANCE UWG in October 2017
 - Interest/plan by NASA to develop a GOES-16/17 active fire product?
 - Is there interest by LANCE to disseminate a NASA GOES-16/17 active fire product via FIRMS?
- Feedback from LANCE UWG in October 2017
 - Can NOAA provide this service to the user community?
- Forest Service Activities
 - Track and seek periodic updates from NOAA and CIMSS staff on NOAA GOES 16/17 active fire algorithm performance status and updates

GOES 16/17 Active Fire Product

- Fire Detection and Characterization (FDC) product
- Based on the legacy GOES
 WF-ABBA algorithm
- Spatial resolution: 2km
- Temporal resolution:
 - 5 minute intervals for CONUS
 - 10 minute intervals for full disk
- Fire characterization:
 - Fire size and temperature
 - FRP
 - Detection confidence

Information courtesy of NOAA, CIMSS and CIRA

GOES FDC Data Provisioning Services

\leftarrow	> c	C" 1	ĉ		0	https://satep	osanone.nesdis. noaa.g	ov/pub/Fl	RE/FDC/G16.F	DCF2019294.2	2300.da
year, month, day, hh, mm, Lor					Lon,	Lat,	Area, Temp,	P	ower,	Fireflg	
2019,	10,	21,	23,	00,	-121.554214,	37.912216,	83456.9375,	513.,	154.41423	0, 30	
2019,	10,	21,	23,	00,	-110.107681,	27.444212,	-999.0000,	-999.,	37.93976	6, 34	
2019,	10,	21,	23,	00,	-108.950653,	26.201597,	29184.7402,	477.,	31.30729	5, 10	
2019,	10,	21,	23,	00,	-112.086960,	35.094929,	-999.0000,	-999.,	-999.00000	0, 32	
2019,	10,	21,	23,	00,	-106.065811,	22.899326,	-999.0000,	-999.,	-999.00000	0, 35	
2019,	10,	21,	23,	00,	-106.059258,	22.878111,	-999.0000,	-999.,	-999.00000	0, 35	
2019,	10,	21,	23,	00,	-106.033867,	22.877201,	-999.0000,	-999.,	-999.00000	0, 35	
2019,	10,	21,	23,	00,	-110.350945,	34.321018,	72053.6797,	462.,	60.78995	9, 30	
2019,	10,	21,	23,	00,	-110.153320,	34.186802,	15952.0801,	573.,	63.68980	0, 30	
2019,	10,	21,	23,	00,	-109.681213,	33.718983,	76993.0625,	482.,	89.91593	9, 30	
2019,	10,	21,	23,	00,	-100.864723,	39.876823,	56381.8203,	507.,	96.55795	3, 30	
2019,	10,	21,	23,	00,	-93.184769,	17.894596,	-999.0000,	-999.,	-999.00000	0, 32	
2019,	10,	21,	23,	00,	-95.989525,	33.690086,	9549.1797,	565.,	34.60832	6, 30	
2019,	10,	21,	23,	00,	-88.821358,	18.360846,	-999.0000,	938.,	38.77060	7, 30	
2019,	10,	21,	23,	00,	-88.819458,	18.341106,	-999.0000,	906.,	36.46851	3, 30	
2019	10	21	23	00	-78 508331	2 294375	-999 0000	-999	-999 00000	0 15	

Hazard Mapping System Fire and Smoke Product

Provisional GOES 16 FDC available from NOAA NESDIS

- CONUS and Full Disk
 products available
- Analyst-validated GOES 16 FDC output integrated into operational HMS product

Information courtesy of NOAA and CIMSS

GOES FDC Reliability and Performance

- Significant commission error rates
 - FDC V1 false positive rate:
 - 70%-90% for low to high confidence classes
 - ~35% for fully processed
 - FDC V2 false positive rate:
 - ~20% in medium, high and fully processed confidence classes
 - >80% in low confidence class
 - Some improvement in commission error for FDC V2, but higher omission errors

Information courtesy of Hall et al. 2019, NOAA and CIMSS

GOES FDC Summary/Recommendations

- FDC currently not an acceptable product for operational use
 - Not of the same quality and reliability as MODIS/VIIRS active fire products
 - Recommend not to integrate current FDC products into LANCE/FIRMS
- Revision to FDC continues, but timeline to a reliable operational product is unknown
 - Need to support efforts to facilitate a GOES NRT algorithm/product suitable for the operational community
 - Possibilities for NOAA to accelerate improvement of FDC?
 - NASA opportunities to develop and support an algorithm and product?

L8 Active Fire Request Background

- Questions to the LANCE UWG in October 2017
 - Interest by LANCE to make available and disseminate the Landsat 8 active fire product via FIRMS?
 - Logical processing element to provide an operational, low latency product?
- Feedback from LANCE UWG in October 2017
 - Can the active fire algorithm / product be integrated into the USGS EROS operational Landsat data processing workflow?
- Forest Service Activities
 - Engage USGS EROS Science and Applications Branch and Ground Station Management POCs
 - Discussions still ongoing to find pathways to reduce data latency, including onsite operational production of L8 data

L8 Active Fire Product

Fire Activity Detected By Landsat 8 Last 0 To 6 Hours Last 6 To 12 Hours Last 12 To 24 Hours 6 Days Previous To Last 24 Hours Updated: 2200 MDT

- Developed through support by the NASA Applied Sciences Program
- Spatial resolution: 30m
- Input data: Landsat L1T OLI
- Temporal resolution: 16 days
- Fire characterization: Detection confidence

Palisades Fire October 21, 2019 Landsat 8 Active Fire (30m) 18:28 UTC

US REAC NASA

© 2018 Google Gray Buildings © 2011 CyberCity

L8 Active Fire Data Processing/Provisioning

- GTAC pulls daily L1T
 data from USGS EROS
- GTAC processes and disseminates U.S. / Canada data
 - GIS data
 - KMLs
 - WMS services
- Data processing conducted with PIs and NASA DRL

L8 Active Fire Collaboration with USGS EROS

- EROS responses to submitted requests
 - Reduction of latency for source L1T data?
 - Will continue to attempt to reduce for US and Canada as part of their Optimized Tiered Data Processing System (DPS) over the longer term.
 - Latency of L1T data has been improving (3-5 hours).
 - Onsite execution of L8 active fire algorithm?
 - Very possible. However, further discussion is needed to ensure it is run in a suitable processing framework from the NASA LANCE and EROS perspective.
 - May require an IAA to address production costs.
 - LANCE processing element?
 - Possibly. May require an IAA to address data staging and dissemination costs.

L8 Active Fire Summary/Recommendations

- Leverage opportunities to continue reducing data latency and increasing availability of the Landsat 8 active fire product
 - Improving latency of source L1T data
 - Potential onsite data processing at EROS
 - LANCE processing element at EROS is a possibility
- Funding and an IAA may be necessary to address potential costs and define agency roles
- GTAC plans to continue processing Landsat 8 data for US and Canada after it migrates to the NASA GSFC environment
 - Potential synergies with planned active fire data processing using Sentinel 2A/2B and Landsat 9

Thanks!

USDA Forest Service Geospatial Technology and Applications Center (GTAC)

United States Department of Agriculture, Forest Service